UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY QUALITY OF GROUND WATER IN THE COLUMBIA BASIN, WASHINGTON, 1983 By G. L. Turney U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 85-4320 Prepared in cooperation with the STATE OF WASHINGTON DEPARTMENT OF ECOLOGY # UNITED STATES DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director For additional information write to: District Chief U.S. Geological Survey 1201 Pacific Avenue - Suite 600 Tacoma, Washington 98402-4384 Copies of this report can be purchased from: Open-File Services Section Western Distribution Branch U.S. Geological Survey Box 25425, Federal Center Lakewood, Colorado 80225 (Telephone: (303) 234-5888) #### CONTENTS | | Page | |---|------| | Abstract | 1 | | Introduction | 2 | | Purpose and scope | 2 | | Other studies | 2 | | Acknowledgments | 3 | | Description of region | 4 | | Location | 4 | | Climate | 4 | | Geohydrology | 6 | | Methods | 7 | | Well- and spring-numbering system | 7 | | Well selection | 8 | | Sampling | 8 | | Field and laboratory analyses | 8 | | Data presentation | 9 | | Drinking water regulations | 10 | | Quality of ground water in sampled wells | 13 | | Water types | 13 | | Hardness | 14 | | Sodium-adsorption ratio | 15 | | Dissolved solids | 17 | | Iron, manganese, and trace metals | 17 | | Nitrate | 18 | | Fecal-coliform bacteria | 19 | | Constituents exceeding drinking water regulations | 19 | | Historical (pre-1983) water-quality data | 21 | | Selection of data | 21 | | Problems in using historical data | 21 | | Discussion of historical data | 22 | | Summary | 24 | | Selected references | 25 | #### ILLUSTRATIONS ### (Plates in pocket) PLATE 1. Locations of sites with 1983 ground-water quality data. | : | 2.
3.
4.
5. | Water types and concentrations of dissolved solids. Concentrations of iron, manganese, and trace metals. Concentrations of nitrate. Locations of sites with historical (pre-1983) groundwater-quality data. | | |--------|----------------------|--|----------| | | | | Page | | FIGURE | 1.
2. | of major aquifers and aquifer regions Diagram showing irrigation category of sites | 5 | | | | sampled | 16 | | | | TABLES | | | | | | | | TABLE | 1. | Summary of ground-water-quality data, by county: | | | | | Adams County | 28
29 | | | | Douglas CountyFranklin County | 30 | | | | Grant County | 31 | | | | Lincoln County | 32 | | | 2. | Ground-water-quality data: major ions, field | | | | | measurements, and concentrations of iron, | | | | | manganese, nitrate, and bacteria, by county: | | | | | Adams County | 34 | | | | Douglas County | 59 | | | | Franklin County | 64 | | | | Grant County | 79 | | | 3. | Lincoln CountyGround-water-quality data: trace metals concen- | 134 | | | J. | trations, by county: | | | | | Adams County | 155 | | | | Douglas County | 157 | | | | Franklin County | 159 | | | | Grant County | 162 | | | | Lincoln County | 165 | | | 4. | Major ions as a percentage of total cation or | | | | | anion milliaguiralanta | 160 | #### QUALITY OF GROUND WATER IN #### THE COLUMBIA BASIN, WASHINGTON, 1983 By G. L. Turney #### ABSTRACT Ground water from 188 sites in the Columbia Basin of central Washington was sampled and analyzed in 1983 for pH, specific conductance, and concentrations of fecal-coliform bacteria, major dissolved ions, and dissolved iron, manganese, and nitrate. Twenty of the samples were also analyzed for concentrations of dissolved trace metals including aluminum, arsenic, barium, cadmium, chromium, copper, lead, mercury, selenium, silver, and zinc. The predominant water types were sodium bicarbonate and calcium bicarbonate. The sodium bicarbonate water samples had higher pH, fluoride, and sodium-adsorption-ratio values than samples with other water types. Dissolved-solids concentrations were generally between 250 and 500 mg/L (milligrams per liter). Iron and manganese concentrations were usually less than 10 ug/L (micrograms per liter). Most trace-metal concentrations were also less than 10 ug/L except for barium and zinc, which had maximum concentrations of 170 and 600 ug/L, respectively. Nitrate concentrations were less than 1.0 mg/L in water from more than half the wells sampled. Concentrations exceeded 1.0 mg/L in large areas of Lincoln, eastern Adams, Franklin, and southern Grant Counties. No fecal-coliform bacteria were detected. U.S. Environmental Protection Agency drinking water regulations were exceeded in several samples, most commonly involving pH and concentrations of fluoride, nitrate, and dissolved solids in samples from Adams and Grant Counties. Generally, the historical data lead to similar conclusions about the quality of ground water in the Columbia Basin region. However, historical samples had higher dissolved-solids concentrations in Douglas County. Historical samples also included fewer sodium bicarbonate type waters in the region as a whole than the 1983 samples. These differences may be due to inconsistencies in data collection or analytical methods. #### INTRODUCTION The State of Washington Department of Ecology (WDOE) is responsible for the protection and management of ground water in the State of Washington. The WDOE also makes decisions regarding drilling permits, pumpages, and water rights. To aid in meeting these responsibilities, a statewide assessment of ground-water quality was made. #### Purpose and Scope In 1979, the U.S. Geological Survey, in cooperation with the WDOE, established a ground-water-quality assessment program for Washington. The State was divided into five regions on the basis of work by Molenaar and others (1980); one region would be studied each year over a 5-year period. Approximately 100 wells would be sampled once in each region, and the water analyzed for common water-quality constituents. The data from these analyses would be compared with historical data from wells in the same region. This compilation of data could then be used by the WDOE to assess the general ground-water quality for a given region and to detect any major water-quality changes that might have occurred. The data also would provide a basis of comparison for future regional studies. This report presents ground-water quality data for the Columbia Basin region of eastern Washington. The other four regions--Puget Sound, northeastern-north central, southwestern, and southeastern-south central--are discussed, respectively, by Ebbert (1984), Ebbert and Payne (1985), and Turney (1986a, 1986b). #### Other Studies Several ground-water and geologic studies have been made in local areas within the region (Walters and Grolier, 1960; Garrett 1968; Luzier and Burt, 1974; and Tanaka, Hansen, and Skrivan, 1974). Statewide and nation-wide studies have also included the Columbia Basin, although it is commonly defined as a larger area (Van Denburgh and Santos, 1965; Foxworthy, 1979; Molenaar and others, 1980; and Lum and Turney, 1982). Most of these previous studies were concerned primarily with the availability of ground water and addressed ground-water quality secondarily. Lum and Turney (1982), as part of an assessment of historic ground-water-quality data, considered all available data from the Columbia Basin. Concurrent with the study reported here a major geochemical study was carried out covering the entire Columbia Basin and outlying areas to assess ground-water flow and water quality in the various basalt aquifers in eastern Washington (Bortleson and Cox, 1985; Hearn and others, 1985). Data from that study were used for this report. #### <u>Acknowledgments</u> Appreciation is expressed to the city and town officials, local agencies, and private landowners who granted access to their wells. This cooperation was essential to the project. #### DESCRIPTION OF REGION #### Location The Columbia Basin is located in the central part of eastern Washington (fig. 1). It is bounded on the north, west, and southwest by the Columbia River. At the confluence of the Columbia and Snake Rivers, the southeastern boundary follows the Snake River, then the Palouse River. The eastern boundary is formed by the edge of the Palouse and Spokane River drainage basins. The northeastern boundary is the Spokane River, which drains to the Columbia River. Included in the Columbia Basin are all of Adams, Douglas, Franklin, Grant, and Lincoln Counties. Small parts of Spokane and Whitman Counties are also in the study area, but no wells were sampled in these counties. Molenaar and others (1980) considered the Columbia Basin as one large hydrologic region with no major subdivisions. #### Climate The climate of the Columbia Basin is influenced primarily by the Cascade Range and the Rocky Mountains. These mountains serve as barriers for precipitation, which moves into the region from either the Pacific Ocean or the midcontinent, depending upon the time of year. As a result, the basin has a fairly dry climate with significant seasonal temperature variations. Areal climatological differences in the region are due to local topography. Precipitation and temperature data from several locations in the study area are given below (Phillips, 1960). | | Mean ai | r tempe | Mean precipita-
tion, in inches | | |-------------------|---------|---------|------------------------------------|--------| | | Jan. | July | Annual | Annual | | Waterville | 22.2 | 66.6 | 45.1 | 11.57 | | Ephrata | | | | 8.42 | | Wilbur | 24.5 | 67.6 | 46.6 | 12.93 | | Odessa | 27.2 | 70.9 | 49.2 | 10.81 | | Ritzville | 27.0 | 71.1 | 49.1 | 11.67 | | Hatton | 28.1 | 71.9 | 49.9 | 9.94 | | Kennewick (Pasco) | 31.8 | 75.1 | 53.6 | 7.49 | These data represent climatic conditions from 1931 to 1960. Mean air temperatures for January
and July are included because they represent the extremes in mean monthly temperatures. Temperature extremes below $0^{\circ}F$ and above $100^{\circ}F$ are usually recorded every year. Temperatures increase from north to south, and precipitation tends to follow a reverse pattern, decreasing from north to south. FIGURE 1.--Location of study area and boundaries of major aquifers and aquifer regions. #### Geohydrology The geology of the Columbia Basin was influenced primarily by several lava flows that covered the region during the Miocene Epoch (Swanson and Wright, 1978). In many places these flows combined to create formations that range from a few feet to hundreds of feet in thickness. The basalt flows are separated from each other by layers of clays and sands that represent erosional deposits on top of the underlying flows. Late Pliocene and Pleistocene uprisings of the Cascade Range caused sloping of some of the flows, as well as folds, faults, and other geologic deformations. Three basalt formations are hydrologically significant in the Columbia Basin. The oldest of these is the Grande Ronde Basalt, which underlies the entire study area and is several thousand feet thick in places. The second formation, the Wanapum Basalt, also underlies all of the study area, but is much thinner, averaging 600 feet in thickness. The most recent basalt formation is the Saddle Mountains Basalt, but within the study area it is generally limited to the southeast quarter of the Columbia Basin and is less than 200 feet thick. A more detailed discussion of these formations is in Drost and Whiteman. Unconsolidated surficial deposits over the basalt are present throughout most of the region and are due primarily to Pleistocene glacial flooding and windblown silt, or loess. They are not an important groundwater source except in two areas--in the Pasco Basin, which is the southern part of Franklin County, and in the Quincy Basin, which lies between Quincy, Ephrata, Moses Lake, and the Frenchman Hills (pl. 1). Ground water is generally abundant in the cracks and crevices of the basalt layers. Ground-water flow occurs both vertically and laterally within the region. Vertical flow is generally downward in the northeast and throughout the central part of the basin. Vertical flow is upwards at discharge areas near the Columbia and Snake Rivers, Crab Creek, and locally near major surface-water bodies. Horizontal flow generally follows the surface gradient, which is from the northeast to the southwest. Natural ground-water flow throughout the region is affected by recharge from irrigation, discharge through heavy pumpage of wells, and leakage between aquifers through uncased wells. Ground-water flow is discussed more thoroughly in Bortleson and Cox, 1985, and Hearn and others, 1985. Most of the wells drilled in the Columbia Basin were finished in one or more of the three basalt formations. For the most part, each of the three basalt formations represents a distinct aquifer, as do the unconsolidated formations. Due to the number of wells sampled and the similarities within formation type, no distinction was made between individual aquifers. However, analytical results of water samples from basalt formations were considered separately from those from unconsolidated formations when a chemical difference was apparent. #### **METHODS** #### Well- and Spring-Numbering System The well- and spring-numbering system used by the U.S. Geological Survey in the State of Washington is based on the rectangular subdivision of public land, which indicates township, range, section, and 40-acre tract within the section. For example, in well number 19/26E-25D01, the part preceding the hyphen indicates the township and range (T. 19 N., R. 26 E.) north and east of the Willamette base line and meridian, respectively. (Because all wells in Washington are north of the base line, the "N" designation of the township is omitted.) The first number following the hyphen (25) indicates the section, and the letter (D) gives the 40-acre tract within that section. The last number (01) is the serial number of the well in that particular 40-acre tract. In spring designations, the serial number is followed by the letter "S". If a well has been deepened, the serial number is followed by the letter "D" and a number indicating the sequence of the deepening. For example, if 19/26E-25D01 had been deepened twice, it would now be numbered 19/26E-25D01D2. | | R | . 2 | 6 E | | | | | | | |--------------|-----|-----|-----|---|--|--|--|--|--| | 19/26E-25D01 | D D | С | В | А | | | | | | | 19 | E | F | G | Н | | | | | | | | М | L | К | J | | | | | | | N. : | N | Р | Q | R | | | | | | | Section 25 | | | | | | | | | | #### Well Selection As mentioned previously, the data for this report were taken from a concurrent geochemical study of ground water in the basalts of the Columbia Basin. The primary concerns were to obtain a good areal representation of the region and to sample wells tapping single basalt formations. Although important in the geochemical study, the particular basalt unit tapped is not used in this study, which is concerned only with the wells that tap basalt units as a whole. A few wells tapping unconsolidated materials were sampled in the Pasco and Quincy Basins, where these deposits are important. Using the above criteria, 188 wells were selected and sampled throughout the Columbia Basin. Plate 1 shows the locations of all the wells sampled; it also indicates whether a well is finished in unconsolidated material or in basalt. Township and range locations of the wells are indicated on the map and the section number, 40-acre tract designation, and serial number are given next to each well symbol. #### Sampling All wells were sampled in spring 1983. Sampling was done according to standard Geological Survey procedures, as described in the "National Handbook of Recommended Methods for Water-Data Acquisition" (U.S. Geological Survey, 1977). Prior to sampling, wells were pumped for a period sufficient to flush all supply lines to insure that water to be sampled was representative of the aquifer. With the pump running, samples were taken from the tap or discharge tube closest to the well head. Samples were preserved in the field for analysis at the Survey's Water Quality Laboratory in Arvada, Colo. #### Field and Laboratory Analyses Field determinations of water temperature, specific conductance, and pH were made at the time of sampling. Determinations of fecal-coliform bacteria were made at all sites used for domestic or municipal purposes. All samples were analyzed in the laboratory for concentrations of major cations and anions, dissolved nitrite-plus-nitrate, iron, and manganese. Values of hardness, sodium-adsorption ratio, and dissolved solids were calculated from the constituents analyzed. Trace-metal concentrations were analyzed in 20 of the samples. The number of trace-metal analyses was limited by budget considerations. #### Data Presentation The data generated by this study are presented on maps on five plates located in the pocket at the end of the report: - Plate 1. Locations of sites with 1983 ground-water quality data - Plate 2. Water types and concentrations of dissolved solids - Plate 3. Concentrations of iron, manganese, and trace metals - Plate 4. Concentrations of nitrate - Plate 5. Locations of sites with historical (pre-1983) ground-water quality data. Tables containing both 1983 and historical data, tabulated by county, and data summaries pertinent to the plates are located at the end of the report. #### DRINKING WATER REGULATIONS The EPA has established two sets of regulations that apply to drinking water. The national interim primary drinking water regulations (U.S. Environmental Protection Agency, 1976) include chemicals in water that can affect human health. These regulations apply to public water supplies and are enforceable by the EPA or the individual States. The national secondary drinking water regulations (U.S. Environmental Protection Agency, 1977a) pertain to the esthetic qualities of drinking water. They are guidelines only and are not legally enforceable by a Federal agency. Both sets of regulations are based on concentrations of chemicals in water, usually expressed in milligrams per liter (mg/L) or micrograms per liter (ug/L). The regulations for constituents discussed in this report are as follows: #### Primary Drinking Water Regulations | Constituent | Maximum allowable concentration | |----------------------|---------------------------------| | Arsenic | 50 ug/L | | Barium | 1,000 ug/L | | Cadmium | 10 ug/L | | Chromium | 50 ug/L ₁ | | Fluoride | 1.4-2.4 mg/L ¹ | | Lead | 50 ug/L | | Mercury | 2 ug/L | | Nitrate (as Nitrogen | 10 mg/L | | Selenium | 10 ug/L | | Silver | 50 ug/L | #### Secondary Drinking Water Regulations | Constituent | Maximum allowable concentration | |--|--| | Chloride Copper Dissolved Solids Iron Manganese pH Sulfate | 250 mg/L
1,000 ug/L
500 mg/L
300 ug/L
50 ug/L
6.5-8.5 units
250 mg/L | | Zinc | 5,000 ug/L | ¹The fluoride regulation varies because human water consumption varies with air temperature; as air temperature increases, the maximum allowable fluoride concentration decreases (U.S. Environmental Protection Agency, 1977b). These figures represent an allowable range for pH values. The rationales behind these regulations vary. Most of the metals are of concern because of their harmful and (or) esthetic effects on humans. Arsenic, barium, cadmium, chromium, lead, mercury, and selenium are all highly toxic to humans in relatively low concentrations. Arsenic is a known carcinogen and selenium is a suspected carcinogen. Silver is not toxic, but produces a condition in humans called argyria, a blue-gray discoloration of the skin, eyes, and mucous membranes.
Zinc and copper, in addition to being toxic in extreme concentrations, impart a bitter taste to water in concentrations well below toxic levels. Iron is an essential element for both plant and animal life and is commonly found in ground water. However, excessive concentrations can be harmful or even fatal to some forms of crops and aquatic life. The primary objections to high iron concentrations for human use are not health related, but esthetic. Iron concentrations exceeding 300 ug/L cause objectionable tastes and stain laundry and plumbing fixtures. Some industrial applications, such as paper production, food processing, and chemical production, require that concentrations be even lower than 300 ug/L. Manganese is also essential to both plant and animal life. Ingestion of high levels can be toxic to humans, however, and at concentrations substantially less than toxic levels the taste of the water is impaired. Concentrations greater than 50 ug/L can stain laundry and plumbing fixtures. Manganese compounds are common in ground water, often occurring in conjunction with iron. Fluoride concentrations exceeding the approved limits can result in dental fluorosis, which is characterized by mottling of teeth. Long-term, high-level exposures (8-20 mg/L for several years) can cause bone changes and result in crippling, but these levels rarely have been found in the United States. The nitrate regulation is based on the concentrations at which the condition methemoglobinemia can occur in infants. This disease can result in suffocation of the infant because the oxygen-carrying capacity of hemoglobin is impaired by the presence of high nitrate concentrations. Older children and adults apparently are not affected. Chloride and sulfate can be tasted in the water before harmful concentrations are reached. The secondary drinking water regulations are set at these taste-threshold levels. Moderate sulfate concentrations (600 mg/L) may act as a laxative on persons unaccustomed to such water, but the effect is usually temporary. Dissolved-solids concentrations can alter the taste of water and may be associated with other undesirable properties, such as corrosiveness and hardness. Water with a low pH is corrosive, and water with a high pH has a bitter taste. Drinking water regulations do not consider fecal-coliform bacteria as a separate group. For purposes of this report, the presence of any fecal-coliform bacteria is assumed to indicate a potential health problem. A more detailed discussion of most of the constituents can be found in "Quality Criteria for Water, 1976" (U.S. Environmental Protection Agency, 1977b). Instances in this study where drinking water regulation limits have been exceeded are discussed later, on pages 19-20. #### QUALITY OF GROUND WATER IN SAMPLED WELLS The water-quality characteristics of the sampled wells are summarized on plates 2, 3, and 4. Statistical summaries for each subregion are presented in table 1 and the basic data for each well sampled are included in tables 2 and 3. Some of the more important water-quality characteristics are discussed in this section. #### Water Types The water type is based on the relative percentages of the major ions present and is shown on plate 2 for each well sampled. Major ions are usually grouped into positive and negative ions, or cations and anions. The major cations are calcium, magnesium, sodium, and potassium; the major anions are bicarbonate and carbonate (or alkalinity), chloride, sulfate, and nitrate. The water type is described by the predominant cation and anion concentrations. If one ion exceeded each of the others in its group by 10 percent or more, it was considered predominant. Where no single ion was predominant but two ions greatly exceeded the rest, a combined water type was assigned. Unusual water types, or water that showed no predominant type, are represented by a "mixed or unusual" category. The actual percentages of ions in each sample are listed in table 4. Samples from 79 wells, primarily the basalt wells of eastern Grant, western Adams, and southern Franklin Counties, had sodium bicarbonate water. Samples from 42 wells, in Douglas, Lincoln, and eastern Adams Counties, had calcium bicarbonate water. Twenty-three samples of calcium-magnesium bicarbonate water types were found, primarily from southern Grant and northern Franklin Counties. The last designated water type, calcium-sodium bicarbonate, probably reflects a mixing of calcium bicarbonate and sodium bicarbonate waters from different aquifers, and was found in only 10 wells throughout the region. "Mixed or unusual" water types were found in 34 wells throughout the region, but mainly in southwestern Grant and southern Lincoln Counties. Those ground waters in which bicarbonate was not the predominant anion usually contained a mixture of anions. Sulfate predominated in some samples, possibly due in part to agricultural activities, which are common throughout the study area. Other possible sources are isolated sulfate deposits, such as gypsum or sulfate. The sodium bicarbonate waters were generally from deeper wells, or from wells in the southern part of the study area. According to ground-water-flow patterns, these wells would have water that is older and has a longer residence time in the basalt formations. Water in these formations that is initially high in calcium and magnesium content dissolves sodium from the aquifer material and precipitates calcium and magnesium (Hearn and others, 1985). The sodium content of the water increases with residence time, eventually resulting in a sodium bicarbonate water type in older waters. Water samples from unconsolidated deposits in the region were mostly calcium bicarbonate or calcium-sodium bicarbonate. No sodium bicarbonate water was found in these deposits. In Quincy Basin this is similar to the water types of the basalt wells in the area, but in Pasco Basin this is a sharp contrast to the sodium bicarbonate waters from basalt wells. #### Hardness Hardness is related to the ability of soaps to produce a lather in water; soft water reacts with soaps to produce an abundant lather with no residue, and hard water produces less lather and leaves a soapy residue. Hardness is caused primarily by the presence of calcium and magnesium in water; however, iron, manganese, and strontium also may contribute to water hardness. Hard waters may leave a scale deposit in boilers and hot water tanks that reduces their efficiency and causes clogging. The degree of a water's hardness can severely restrict its utility for domestic, municipal, and industrial purposes. Hardness is expressed in terms of equivalent amounts of calcium carbonate. The fraction equivalent to carbonate and bicarbonate is referred to as carbonate hardness, and any excess is noncarbonate hardness. The following table shows the number of wells in each category of the hardness classification scheme proposed by the U.S. Environmental Protection Agency (1977b). | Hardness as CaCO in milligrams per liter | Description | Number of wells | |--|-----------------|-----------------| | 0-75 | Soft | 59 | | 76-150 | Moderately hard | 62 | | 151-300 | Hard | 51 | | More than 300 | Very hard | 16 | Hardness varies considerably in Columbia Basin ground water, but there are some patterns. The soft and moderately hard waters were usually of the sodium bicarbonate type, from the central and southern areas of the region. The harder waters were of the non-sodium water types from the north, west, and east areas of the region. #### Sodium-Adsorption Ratio A high level of sodium in water can cause serious irrigation problems. Sodium enters into ion-exchange reactions with calcium and magnesium and builds up in the soil, causing swelling and crusting of the soil, reduced permeability, and the loss of infiltration capacity. the soil becomes difficult to cultivate and irrigate without prior conditioning with substances such as gypsum or lime. The degree of sodium adsorption is determined by the ratio of sodium to calcium plus magnesium in the water. This ratio is called the sodium adsorption ratio (SAR), and indicates the degree to which sodium will be adsorbed by a soil when the water is brought into equilibrium with it. The ratio is defined by Hem (1978) as $$SAR = \sqrt{\frac{Ca^{++}) + (Mg^{++})}{2}},$$ where ion concentrations are expressed as milliequivalents per liter. Values of SAR are often used in conjunction with specific conductance to evaluate the suitability of irrigation waters. SAR (S) is plotted against specific conductance (C) on a standard diagram of irrigation categories (fig. 2). Waters are classified according to the degree of salinity and sodium hazard assigned to the section of the diagram they fall in (U.S. Department of Agriculture, 1954). For example, water from well 15/30E-12L01, with a specific conductance of 362 micromhos per centimeter and an SAR of 2.1, is in the medium salinity-low sodium (C2-S1) category. In the Columbia Basin, the primary irrigation hazard was salinity rather than sodium. Water samples from over 150 wells indicated a medium or high salinity (C2, or C3) hazard. Several wells had water indicating a medium sodium hazard (S2), and five wells had high (S3) or very high (S4) sodium water. As would be expected, most of these high sodium wells had sodium bicarbonate type waters. A more detailed explanation of these irrigation categories and their relationships to soils can be found in "Diagnosis and Improvement of Saline and Alkali Soils" (U.S. Department of Agriculture, 1954). # SPECIFIC CONDUCTANCE, IN MICROMHOS PER CENTIMETER AT 25 DEGREES CELSIUS SALINITY HAZARD FIGURE 2.--Irrigation category of sites sampled. (From U.S. Department of Agriculture, 1954.) #### Dissolved Solids Dissolved solids are the minerals in solution in water. When a portion of the water is evaporated to dryness, the residues are considered to be dissolved
solids. Dissolved-solids concentrations are primarily indicators of the total mineral content of a water, but also may be related to problems such as excessive hardness, corrosive characteristics, or other mineral contaminations. Dissolved-solids concentrations may be determined either gravimetrically or by calculation. In the gravimetric method, a known volume of water is evaporated and the residue weighed. The calculated value is the sum of all major chemical constituents that contribute to dissolved solids. Results from the two methods can be compared directly. The dissolved-solids concentrations of the samples from wells in this study were calculated and are shown graphically on plate 2. Concentrations of dissolved solids between 251 and 500 mg/L were most common and occurred primarily in the western, central, and southern areas of the region; dissolved-solids concentrations less than 250 mg/L were predominant in the northern and eastern areas. Only 11 wells had water with dissolved-solids concentrations exceeding 500 mg/L. Although the distribution of dissolved solids is similar to the distribution of water types, several samples with calcium carbonate water had moderate dissolved-solids concentrations and several samples with sodium carbonate water had low dissolved-solids concentrations (plate 2). This indicates that the correlation between dissolved solids and water type is not as strong as suggested by looking at the distributions of the two characteristics separately. #### Iron, Manganese, and Trace Metals All well water samples were analyzed for dissolved iron and manganese concentrations. Samples from 20 wells were analyzed for concentrations of dissolved trace metals, including aluminum, arsenic, barium, cadmium, chromium, copper, lead, mercury, selenium, silver, and zinc (table 3). Wells with water having excessive iron and manganese concentrations and wells sampled for trace metals are shown on plate 3. A few samples, analyzed for dissolved aluminum only, are included in table 3 but are not indicated on plate 3 as having metal analyses. Iron concentrations were 10 ug/L or less in 45 percent of the water samples analyzed; however, a few samples from each of the counties except Douglas County had concentrations exceeding 50 ug/L. In all of the counties, median iron concentrations were less than 20 ug/L. Manganese concentrations were 10 ug/L or less in over 80 percent of the water samples analyzed. Eight samples from various parts of the region had concentrations exceeding 50 ug/L. In all of the counties median manganese concentrations were below 10 ug/L. Contrary to results from studies in other regions (Turney, 1986a), high concentrations of iron and manganese did not necessarily occur together. Cadmium, chromium, copper, lead, selenium, silver, and mercury concentrations never exceeded 10 ug/L. Aluminum concentrations were 10 ug/L or less except in a sample from well 21/30E-03E02 with a concentration of 20 ug/L. Arsenic concentrations were less than 10 ug/L in all water samples except those from wells 18/25E-08C01 and 18/29E-02A01, where concentrations of 13 and 17 ug/L, respectively, were noted. Barium concentrations had a median of 31 ug/L and a maximum concentration of 170 ug/L. The median zinc concentration was 18 ug/L, but in water from five wells exceeded 100 ug/L. This included two wells in Douglas County, 24/25E-18E01 and 24/16E-06H01, where zinc concentrations were 560 and 600 ug/L, respectively. The high zinc concentrations could be due to leaching from water lines. Many plumbing materials contain zinc (especially in galvanizing), and contamination could occur even if the lines are thoroughly flushed before sampling. In these cases, the results may not flect true aquifer conditions. #### **Nitrate** All samples were analyzed for concentrations of dissolved nitrite-plusnitrate. Because the concentration of nitrite is generally negligible in comparison to nitrate, nitrite-plus-nitrate is assumed to be equivalent to nitrate and is referred to simply as nitrate in this report. Nitrateconcentration ranges for water in the sampled wells are shown on the map on plate 4. Nitrate is found naturally in soils as part of the nitrogen cycle. However, high nitrate concentrations in ground water are usually associated with agricultural activities, landfills, and septic tanks. Waste products often leach into shallow aquifers, causing increases in the nitrate concentration. In some cases, vertical leakage into deeper aquifers may affect them as well. Concentrations of dissolved nitrate in water samples from the Columbia Basin differed greatly. Water in over half of the wells sampled had nitrate concentrations less than 1.0 mg/L, expressed as nitrogen. Thresholds of 1.0 and 5.0 mg/L were chosen arbitrarily to indicate moderate and high nitrate concentrations, respectively. Moderate and high concentrations were found in large areas of Lincoln, eastern Adams, Franklin, and southern Grant Counties. Land-use practices indicate that these elevated concentrations are probably a result of agricultural activities in these areas. Most wells in western Adams County and eastern Grant County had water with low nitrate concentrations, even though they also are in agricultural areas. These wells are generally deeper than in the rest of the region, and this may be the reason for the lower concentrations. #### Fecal-Coliform Bacteria Fecal-coliform bacteria inhabit the intestines and feces of warmblooded animals. Their presence in water is an indicator of contamination by human or animal excrement. Because feces are a source of pathogenic bacteria and viruses, the presence of fecal-coliform bacteria in a water supply can indicate a potential health problem and the need for immediate remedial action. Contamination by fecal-coliform bacteria generally occurs by percolation of water from a contaminated source into the aquifer. Shallow wells are particularly susceptible. In some instances, the contamination may occur from taps and storage tanks. When this happens, the sample does not represent true aquifer conditions. Water samples from all domestic and municipal wells were analyzed for concentrations of fecal-coliform bacteria. Fecal-coliform bacteria concentrations are based on a 100-mL (milliliter) sample of water. Each bacterium in the sample results in a colony (or count) when incubated on selective media. The results are expressed in colonies per 100 mL, and samples in which bacteria are detected are referred to as having "positive" counts. If no bacteria are detected in a 100-mL sample, it cannot be assumed that the water is totally free from bacteria. Therefore, a zero count is expressed as less than one (<1). No samples in the Columbia Basin had positive fecal-coliform bacteria counts. #### Constituents Exceeding Drinking Water Regulations In many instances constituents were present in concentrations exceeding drinking water regulation limits. Fluoride concentrations exceeded the primary regulations in water samples from 16 wells. All of these wells contained sodium bicarbonate water and all but one are in Adams or Grant County. Fluoride is known to occur naturally to some degree in basalt aquifers of eastern Washington and is more soluble as sodium fluoride than as calcium fluoride. Chloride concentrations exceeded the secondary drinking water regulations in water from well 21/33E-24B01. The sulfate concentration in water from well 17/23E-23A01D1 also exceeded the secondary drinking water regulation. Dissolved-solids concentrations exceeded drinking water regulations in waters from 11 wells. Most of these wells were in Grant or Lincoln Counties and eight of them had a mixed or unusual water type (see plate 2). The pH values of 21 water samples were greater than 8.5. All of the wells except one had a sodium-bicarbonate water type and all except two were located in Adams or Grant Counties. Iron concentrations exceeded drinking water regulations in water samples from three wells. Manganese concentrations exceeded drinking water regulations in eight wells. These appeared to be isolated instances of naturally occurring deposits. All of the trace-metal concentrations were well below applicable drinking water regulations. Nitrate concentrations exceeded the primary drinking water regulation in water from 14 wells scattered throughout the region. Most were relatively shallow compared to those with lower nitrate concentrations, and most had water of one of the non-sodium water types. #### HISTORICAL (PRE-1983) WATER-QUALITY DATA #### Selection of Data Sites where ground-water samples were collected and analyzed prior to 1983 are designated on plate 5, including data from previous Geological Survey studies, studies by other agencies done cooperatively with the Survey, and miscellaneous Survey samplings. Only sites with complete cation and anion data are shown on the map. Because many sites have partial data (for example, hardness and alkalinity only), a method was needed to select only sites with complete data. Most "complete" analyses included an analysis for sulfate; thus, sulfate was used as the selection criterion. Additionally, all sites with metals analyses are shown. Only one point is plotted in a section, but the number of sites with available data in a section is indicated. All these data, which were obtained through the Survey's computerized storage and retrieval system (WATSTORE). are included in tables 2 and 3. Statistical summaries of the historical data are shown in table 1. These summaries are based on one data point for each site. If more than one analysis was available for a site, the average value of all analyses of a particular constituent was used to avoid weighting sites with multiple analyses over those with single analyses. #### Problems in Using Historical Data Problems often arise in the interpretation of historical data and in the comparison of present data with historical data. Temporal
fluctuations and changes in analytical techniques and methodology can affect data comparability. Temporal fluctuations can affect certain constituents in several ways. In recharge areas, seasonal weather patterns can affect the water quality in shallow aquifers. Water quality in wells that are pumped seasonally (especially in agricultural areas) can vary over the course of a year. Changes in land use, such as irrigation or construction, can alter the flow pattern and quality of recharge water. These seasonal and daily variations can affect evaluations of temporal differences and long-term trends in water-quality data. Different conventions of analyzing and reporting nitrate concentrations cause difficulties with interpreting and comparing data. Concentrations of nitrate have been expressed as both nitrate and nitrogen. Concentrations expressed as nitrate can be converted to concentrations expressed as nitrogen by simply multiplying the concentration as nitrate by 0.2258. Nitrate data also have been analyzed as nitrate or as nitrite-plus-nitrate. As mentioned before, there is little or no nitrite in most ground waters, and analyses of nitrate and nitrite-plus-nitrate may be considered equivalent. Dissolved- and total-nitrate data also may be considered equivalent because most of the nitrate in ground-water samples is dissolved. Comparisons of analytical results for some total and dissolved metals can also present a problem. Generally, in ground water the concentrations of the total and dissolved phases are approximately equivalent due to a lack of suspended material. However, in some instances metals complexed with suspended or colloidal materials are removed when a sample is filtered for a dissolved analysis. For these cases, the dissolved-metal concentrations are substantially lower than the total metal concentration and may not be considered equivalent. Analytical detection limits also have improved with time. Generally, if a concentration is lower than the analytical detection limit for the given constituent, it is reported as less than the detection limit. In the past, detection limits for some constituents were orders of magnitude higher than at present. This may result in historical data that are not comparable to 1983 data; an example is dissolved lead. Much of the historical data were reported as less than 100 ug/L, but 1983 data are reported as less than 1 ug/L. The historical data reported as less than 100 ug/L cannot be easily compared to any 1983 data because the true values are not known in terms of current detection limits. This example is complicated further by the fact that in the primary drinking water regulations the maximum concentration for lead is 50 ug/L. All historical data analyzed and reported as less than 100 ug/L could exceed the current maximum permissible concentration, but this is difficult to assess. #### Discussion of Historical Data Historically, calcium bicarbonate was the predominant type of ground water in the Columbia Basin. Sodium bicarbonate waters were also common, especially in the southern and central areas of the region. Hardness varied with water type, ranging from soft to very hard. Higher values of pH, fluoride concentration, and SAR were commonly found in sodium-bicarbonate type water. Dissolved-solids concentrations were in the 150- to 400-mg/L range. Iron and manganese concentrations generally were less than 50 ug/L, but a few concentrations exceeded drinking water regulations throughout the region. The only trace-metal problem was dissolved lead; many concentrations were reported as less than 100 ug/L and there was no way to determine readily if these concentrations exceeded drinking water regulations. Nitrate concentrations were, for the most part, below the drinking water regulation limit of 10 mg/L. A few concentrations exceeded 10 mg/L in each county. There are not enough historical data to draw any conclusions about fecal-coliform bacteria. Generally, the historical and 1983 data lead to similar qualitative conclusions about ground water in the Columbia Basin, with some exceptions. In Douglas County, historical data indicate substantially higher concentrations of dissolved solids and most of the corresponding dissolved minerals than do the 1983 data. In the region as a whole, fewer historical sites appear to have had sodium-bicarbonate water types than in the 1983 data, but this may be due to a difference in the location and number of wells sampled. The other overall characteristics in the historical data are similar to those in the 1983 data. Quantitative comparisons of raw data and statistical summaries (table 1) should be used cautiously. Beyond the problems in comparing historical and 1983 data that have already been discussed, some statistical differences in sampling exist also. In the historical data, a large period is covered. Much of the historical data was not sampled randomly, either temporally or spatially. In some areas, there are large differences in the number of wells sampled. All of these factors can affect quantitative conclusions drawn from the data. For these reasons, degrees of long-term change are difficult to establish and will not be discussed. #### SUMMARY Samples collected in 1983 in the Columbia Basin indicate that the predominant chemical constituents of ground water were generally bicarbonate and either sodium or calcium. Sodium bicarbonate waters were predominant in the central and southern areas of the region. Hardness varied accordingly—the sodium bicarbonate waters were soft or moderately hard and the calcium bicarbonate waters were hard. Sodium—bicarbonate water types also had higher values of pH, SAR, and fluoride concentrations than other water types. Dissolved—solids concentrations were generally between 250 and 500 mg/L, although there were lower concentrations in the northern part of the study area. In Quincy Basin there were no significant differences between water from wells in unconsolidated deposits and wells in basalts. In the Pasco Basin water from wells in unconsolidated deposits was calcium-bicarbonate type and water from basalt wells was sodium-bicarbonate type. Iron and manganese concentrations were generally less than 20 ug/L and 10 ug/L, respectively; however, water in a few wells exceeded drinking water regulations for one or both of these constituents. Unlike studies in other regions, a strong correlation between iron and manganese concentrations was not observed. Trace-metal concentrations were generally less than 10 ug/L. Nitrate concentrations were less than 1.0 mg/L in over half of the samples. In large areas of Lincoln, eastern Adams, Franklin, and southern Grant Counties, concentrations exceeded 1.0 mg/L and even 5.0 mg/L in many wells that were generally shallower than those with nitrate concentrations below 1.0 mg/L. No fecal-coliform bacteria were detected. There were several instances where constituents appeared in quantities exceeding drinking water regulations, mostly in Grant or Adams Counties. Regulation limits for pH and fluoride were exceeded 18 and 16 times, respectively, generally in sodium-bicarbonate type water. Limits for dissolved-solids and nitrate concentrations were exceeded fewer times, but over a wider area, in non-sodium water types. The historical data suggest similar conclusions about overall ground-water quality in the Columbia Basin with a few exceptions. Historical samples in Douglas County had higher dissolved-solids concentrations, and there were fewer sodium-bicarbonate water types throughout the region as a whole. These differences and other more quantitative comparisons must be used cautiously, however, due to statistical differences between the historical and 1983 data. #### SELECTED REFERENCES - Bortleson, G. C., and Cox, S. E., 1985, Dissolved sodium in basalt aquifers of the Columbia Plateau, Washington: U.S. Geological Survey Water-Resources Investigations Report 85-4005 [in press] - Drost, B. W., and Whiteman, K. J., 1985, Superficial geology, structural features, and thickness and tops of selected geohydrologic units in the Columbia Plateau, Washington: U.S. Geological survey Water-Resources Investigations Report 84-4326 [in press] - Ebbert, J. C., 1984, The quality of ground water in the principal aquifers of northeastern-north central Washington: U.S. Geological Survey Water-Resources Investigations Report 83-4102, 112 p. - Ebbert, J. C., and Payne, K. L., 1985, The quality of ground water in the principal aquifers of southwestern Washington: U.S. Geological Survey Water-Resources Investigations Report 84-4326, 59 p. - Foxworthy, B. L., 1979, Summary of the nation's ground-water resources Pacific Northwest Region: U.S. Geological Survey Professional Paper 813-5, 39 p. - Garrett, A. A., 1968, Ground-water withdrawal in the Odessa area, Adams, Grant, and Lincoln Counties, Washington: Washington State Department of Water Resources Water-Supply Bulletin 31, 84 p., 1 pl. - Hearn, P. P., Steinkampf, W. C., Bortleson, G. C., and Drost, B. W., 1985, Geochemical controls on dissolved sodium in basalt aquifers of the Columbia Plateau, Washington: U.S. Geological Survey Water-Resources Investigations Report 84-4304, 38 p., 1 pl. - Hem, J. D., 1978, Study and interpretation of the chemical characteristics of natural water: U.S. Geological Survey Water-Supply Paper 1473, 363 p. - Huntting, M. T., Bennett, W. A. G., Livingston, V. E., Jr., and Moen, W. S., 1961, Geologic map of Washington: Washington State Department of Conservation, 1 sheet. - Lum, W. E., II, and Turney, G. L., 1982, Fluoride, nitrate, and dissolved-solids concentrations in ground water of Washington, with reference to drinking water standards: U.S. Geological Survey Water-Resources Investigations Open-File Report 82-508, 4 pls. - Luzier, J. E., and Burt, R. J., 1974, Hydrology of basalt aquifers and depletion of ground water in east-central Washington: Washington State Department of Ecology
Water-Supply Bulletin 33, 53 p., 3 pls. - Molenaar, Dee, Grimstad, Peter, and Walters, K. L., 1980, Principal aquifers and well yields in Washington: U.S. Geological Survey Geohydrologic Monograph 5, scale 1:500,000, 1 sheet. - Phillips, E. L., 1960 [1965], Climate of Washington: U.S. Department of Commerce, Weather Bureau, Climatography of the United States, no. 60-45, 27 p. - Swanson, D. A., and Wright, T. L., 1978, Bedrock geology in the northern Columbia Plateau and adjacent areas: <u>in</u> Baker, V. R., and Nammedal, Dag, eds., The Channedled Scabland: Comparative Planetary Geology Field Conference, June 5-8, 1978, National Aeronautics and Space Administration Office of Space Science, Chapter 3, p. 37-57. - Tanaka, H. H., Hansen, A. J., Jr., and Skrivan, J. A., 1974, Digital model of ground-water hydrology, Columbia Basin Irrigation Project area, Washington: Washington State Department of Ecology Water-Supply Bulletin 40, 60 p. - Turney, G. L., 1986a, Quality of ground water in the Puget Sound region, Washington, 1981: U.S. Geological Survey Water-Resources Investigations Report 84-4258, 116 p., 2 pls. - Turney, G. L., 1986b, Quality of ground water in southeastern and south-central Washington, 1982: U.S. Geological Survey Water-Resources Investigations Report 84-4262, 158 p., 5 pls. - U.S. Department of Agriculture, 1954, Diagnosis and improvement of saline and alkali soils: Agriculture Handbook no. 60, 158 p. - U.S. Environmental Protection Agency, 1976, National Interim Primary Drinking Water Regulations: U.S. Government Printing Office, 159 p. - ----1977a, National Secondary Drinking Water Regulations: Federal Register, v. 42, no. 62, Thursday, Mar. 31, 1977, Part 1, p. 17143-17147. - ----1977b, Quality criteria for water, 1976: U.S. Government Printing Office, 256 p. - U.S. Geological survey, 1977, National handbook of recommended methods for water-data acquisition: Office of Water-Data Coordination, Chapters 2, 4, and 5. - Van Denburgh, A. S., and Santos, J. F., 1965, Ground water in Washington, its chemical and physical quality: Washington State Pollution Control Commission, Water-Supply Bulletin 24, 93 p. - Walters, K. L., and Grolier, M. J., 1960, Geology and ground-water resources of the Columbia Basin Project area, Washington, Volume 1: Washington State Department of Conservation, Division of Water Resources, Water-Supply Bulletin 8, 542 p., 3 pls. ### TABLES 1 THROUGH 4 TABLE 1.--Summary of ground-water-quality data, by county ## [Values in milligrams per liter unless otherwise indicated; historic data are in parentheses] #### Adams County | | | | | | | | Numbe | r of | |---|------|--------|------|-------|-------|-------|-------------|------| | Constituent | Ma | ximum | Mini | mum | Media | n | sample site | | | Specific conductance (micromhos) | 1020 | (1159) | 231 | (203) | 362 | (353) | 64 | (79) | | pH (units) | 9.4 | (9.3) | 7.3 | (7.3) | 8.2 | (8.0) | 64 | (80) | | Bacteria, fecal-coliform (cols./100 mL) | <1 | () | <1 | () | <1 | () | 24 | (0) | | Hardness (as CaCO ₂) | 423 | (388) | 3 | (4) | 84 | (97) | 64 | (81) | | Noncarbonate hardness (as CaCO ₂) | 221 | (187) | 0 | (0) | 0 | (0) | 64 | (81) | | Calcium, dissolved | 95 | (76) | 1.0 | (1.7) | 18 | (21) | 64 | (81) | | Magnesium, dissolved | 45 | (48) | .1 | (.0) | 8 | (11) | 64 | (81) | | Sodium, dissolved | 89 | (141) | 8.5 | (8.2) | 45 | (40) | 64 | (81) | | Sodium adsorption ratio | 25 | (17) | .3 | (.3) | 2.0 | (1.5) | 64 | (81) | | Potassium, dissolved | 14 | (26) | 1.9 | (1.6) | 7.3 | (7.0) | 64 | (79) | | Alkalinity, total (as CaCO) | 283 | (433) | 86 | (85) | 140 | (141) | 64 | (81) | | Sulfate, dissolved | 180 | (126) | 2.2 | (5.0) | 21 | (22) | 64 | (81) | | Chloride, dissolved | 110 | (79) | 2.1 | (2.2) | 11 | (10) | 64 | (81) | | Fluoride, dissolved | 4.8 | (4.3) | .1 | (.2) | .9 | (.6) | 64 | (77) | | Silica, dissolved (as SiO) | 110 | (93) | 30 | (30) | 56 | (48) | 64 | (74) | | Dissolved solids (residue at 180°C) | | (491) | | (185) | | (275) | 0 | (34) | | Dissolved solids, calculated | 669 | (818) | 160 | (149) | 262 | (255) | 64 | (71) | | (sum of constituents) | | | | | | | | | | Nitrate (as N) | 30 | (26) | <.10 | (.00) | .35 | (.39) | 64 | (76) | | Iron, total recoverable (ug/L) | | (2400) | | (<10) | | (50) | 0 | (31) | | Iron, dissolved (ug/L) | 480 | (35) | <3 | (0) | 12 | (3) | 64 | (47) | | Manganese, total recoverable (ug/L) | | (50) | | (<20) | | (20) | 0 | (10) | | Manganese, dissolved (ug/L) | 74 | (80) | <1 | (<1) | 2 | (2) | 64 | (45) | ${\tt TABLE~1.--Summary~of~ground-water-quality~data,~by~county--continued}\\$ ## [Values in milligrams per liter unless otherwise indicated; historic data are in parentheses] #### Douglas County | Constituent | | Maximum | | Minimum | | Median | | Number of sample sites | | |--|-----|---------|-----|---------|-----|--------|---|------------------------|--| | | | | | | | | | | | | Specific conductance (micromhos) | 705 | (1760) | 215 | (220) | 221 | (415) | 5 | (26) | | | pH (units) | 8.2 | (9.0) | 7.2 | (7.0) | 7.5 | (7.6) | 5 | (25) | | | Bacteria, fecal-coliform (cols.100 mL) | <1 | (1) | <1 | (1) | <1 | (1) | 5 | (3) | | | Hardness (as CaCO ₂) | 274 | (878) | 79 | (35) | 97 | (178) | 5 | (26) | | | Noncarbonate hardness (as CaCO ₂) | 183 | (550) | 0 | (0) | 0 | (13) | 5 | (26) | | | Calcium, dissolved | 62 | (170) | 19 | (9.0) | 25 | (44) | 5 | (26) | | | Magnesium, dissolved | 29 | (110) | 7.6 | (3.1) | 11 | (15) | 5 | (26) | | | Sodium, dissolved | 22 | (64) | 7.8 | (3.7) | 12 | (20) | 5 | (26) | | | Sodium adsorption ratio | . 8 | (4.8) | . 4 | (.1) | . 4 | (.7) | 5 | (26) | | | Potassium, dissolved | 3.8 | (12) | 1.2 | (1.1) | 2.0 | (4.0) | 5 | (26) | | | Alkalinity, total (as CaCO ₂) | 115 | (328) | 91 | (81) | 103 | (156) | 5 | (26) | | | Sulfate, dissolved | 50 | (460) | 4.1 | (<5.0) | 15 | (30) | 5 | (26) | | | Chloride, dissolved | 74 | (100) | 1.1 | (.8) | 4.3 | (5.4) | 5 | (26) | | | Fluoride, dissolved | .3 | (2.0) | . 2 | (.2) | .3 | (.3) | 5 | (26) | | | Silica, dissolved (as Si0) | 47 | (60) | 32 | (13) | 45 | (40) | 5 | (26) | | | Dissolved solids (residue at 180°C) | | (1150) | | (152) | | (270) | 0 | (12) | | | Dissolved solids, calculated (sum of constituents) | 347 | (1136) | 160 | (141) | 165 | (265) | 5 | (25) | | | Nitrate (as N) | 22 | (17) | . 2 | 4 (.07) | .66 | (2.4) | 5 | (26) | | | Iron, total recoverable (ug/L) | | (1600) | | (<10) | | (45) | 0 | (12) | | | Iron, dissolved (ug/L) | 19 | (35) | 5 | (<3) | 14 | (10) | 5 | (15) | | | Manganese, total recoverable (ug/L) | | (120) | | (<10) | | (20) | 0 | (8) | | | Manganese, dissolved (ug/L) | 8 | (32) | 1 | (<1) | 3 | (4) | 5 | (15) | | TABLE 1.--Summary of ground-water-quality data, by county--continued # [Values in milligrams per liter unless otherwise indicated; historic data are in parentheses] #### Franklin County | | | | | | | | Numb | er of | |--|-----|---------|------|-------|------|-------|-------------|-------| | Constituent | | Maximum | | imum | Medi | an | sample site | | | Specific conductance (micromhos) | 955 | (1130) | 250 | (151) | 445 | (458) | 29 | (48) | | pН | 8.8 | (8.8) | 7.4 | (7.3) | 7.8 | (7.9) | 29 | (48) | | Bacteria, fecal-coliform (cols./100 mL) | <1 | () | <1 | | <1 | () | 19 | (0) | | Hardness (as CaCO) | 385 | (484) | 3 | (4) | 138 | (138) | 29 | (49) | | Noncarbonate hardness (as CaCO ₂) | 190 | (545) | 0 | (0) | 0 | (0) | 29 | (49) | | Calcium, dissolved | 80 | (140) | .8 | (1.2) | 29 | (30) | 29 | (49) | | Magnesium, dissolved | 57 | (106) | .3 | (.3) | 18 | (14) | 29 | (49) | | Sodium, dissolved | 90 | (115) | 18 | (7.8) | 35 | (34) | 29 | (49) | | Sodium adsorption ratio | 19 | (20) | .5 | (.4) | 1.2 | (1.2) | 29 | (49) | | Potassium, dissolved | 21 | (19) | 2.1 | (1.9) | 6.9 | (6.7) | 29 | (49) | | Alkalinity, total (as CaCO) | 402 | (396) | 103 | (59) | 165 | (149) | 29 | (49) | | Sulfate, dissolved | 150 | (319) | <.2 | (.0) | 43 | (41) | 29 | (49) | | Chloride, dissolved | 55 | (128) | 3.4 | (1.6) | 18 | (14) | 29 | (49) | | Fluoride, dissolved | 2.4 | (4.2) | .3 | (.2) | .6 | (.5) | 29 | (48) | | Silica, dissolved (as SiO ₂) | 100 | (100) | 32 | (25) | 56 | (50) | 29 | (44) | | Dissolved solids (residue at 180°C) | | (1180) | | (113) | | (293) | 0 | (25) | | Dissolved solids, calculated (sum of constituents) | 574 | (977) | 209 | (107) | 311 | (306) | 29 | (48) | | Nitrate (as N) | 13 | (13) | <.10 | (.00) | 1.9 | (1,7) | 29 | (48) | | Iron, total recoverable (ug/L) | | (1200) | | (<10) | | (41) | 0 | (24) | | Iron, dissolved (ug/L) | 150 | (210) | <3 | (<3) | 9 | (6) | 29 | (26) | | Manganese, total recoverable (ug/L) | | (100) | | (<20) | | (20) | 0 | (6) | | Manganese, dissolved (ug/L) | 71 | (67) | <1 | (<1) | 2 | (2) | 29 | (21) | TABLE 1.--Summary of ground-water-quality data, by county--continued [Values in milligrams per liter unless otherwise indicated; historic data are in parentheses] ### Grant County | Constituent | | Maximum | | Minimum | | Median | | Number of sample sites | | |--|------|---------|------|---------|-----|--------|----|------------------------|--| | | | | | | | | | | | | Specific conductance (micromhos) | 1090 | (5040) | 175 | (41) | 393 | (408) | 47 | (150) | | | pH | 9.2 | (9.4) | 7.0 | (6.8) | 7.7 | (7.9) | 47 | (154) | | | Bacteria, fecal-coliform (cols./100 mL) | <1 | () | <1 | () | <1 | () | 28 | (0) | | | Hardness (as CaCO ₃) | 490 | (1735) | 3 | (7) | 141 | (144) | 47 | (174) | | | Noncarbonate hardness (as CaCO) | 350 | (744) | 0 | (0) | 0 | (0) | 47 | (174) | | | Calcium, dissolved | 94 | (239) | 1.2 | (2.2) | 30 | (32) | 47 | (174) | | | Magnesium, dissolved | 62 | (420) | .1 | (.3) | 14 | (15) | 47 | (174) | | | Sodium, dissolved | 110 | (1120) | 5.0 | (5.8) | 31 | (30) | 47 | (162) | | | Sodium
adsorption ratio | 20 | (16) | .2 | (.3) | 1.1 | (1.1) | 47 | (161) | | | Potassium, dissolved | 19 | (55) | 1.5 | (.0) | 5.9 | (5.5) | 47 | (158) | | | Alkalinity, total (as CaCO) | 391 | (1280) | 67 | (40) | 140 | (148) | 47 | (175) | | | Sulfate, dissolved | 280 | (980) | 10 | (4.6) | 36 | (31) | 47 | (175) | | | Chloride, dissolved | 120 | (700) | 1.8 | (1.2) | 14 | (12) | 47 | (175) | | | Fluoride, dissolved | 3.1 | (2.5) | .2 | (.0) | .6 | (.5) | 47 | (133) | | | Silica, dissolved (as SiO ₂) | 74 | (78) | 22 | (11) | 54 | (53) | 47 | (133) | | | Dissolved solids (residue at 180) | | (1740) | | (132) | | (276) | | (101) | | | Dissolved solids, calculated (sum of constituents) | 674 | (1220) | 130 | (131) | 291 | (267) | 47 | (127) | | | Nitrate (as N) | 21 | (14) | <.10 | (.00) | 1.2 | (.83) | 47 | (152) | | | Iron, total recoverable (ug/L) | | (1900) | | (<10) | | (46) | 0 | (78) | | | Iron, dissolved (ug/L) | 370 | (140) | <3 | (0) | 10 | (7) | 47 | (59) | | | Manganese, total recoverable (ug/L) | | (55) | | (<10) | | (50) | 0 | (25) | | | Manganese, dissolved (ug/L) | 97 | (160) | <1 | (<1) | 2 | (5) | 47 | (51) | | TABLE 1.--Summary of ground-water-quality data, by county--continued [Values in milligrams per liter unless otherwise indicated; ### historic data are in parentheses} #### Lincoln County | | | • | | | M - 41 | | Number of | | | |---|------|--------|------|--------|--------|-------|-----------|-------|--| | Constituent | M | aximum | Min | imum | Medi | an | sample | Sites | | | Specific conductance (micromhos) | 1750 | (1270) | 181 | (178) | 370 | (313) | 43 | (71) | | | pH (units) | 8.7 | (8.9) | 6.6 | (6.5) | 7.8 | (7.8) | 43 | (71) | | | Bacteria, fecal-coliform (cols./100 mL) | <1 | () | <1 | () | <1 | () | 25 · | (0) | | | Hardness (as CaCO) | 613 | (652) | 34 | (38) | 113 | (106) | 43 | (71) | | | Noncarbonate hardness (as CaCO ₂) | 399 | (468) | 0 | (0) | 0 | (0) | 43 | (71) | | | Calcium, dissolved | 140 | (150) | 8.2 | (9.0) | 25 | (24) | 43 | (71) | | | Magnesium, dissolved | 64 | (78) | 3.1 | (2.5) | 12 | (11) | 43 | (71) | | | Sodium, dissolved | 120 | (120) | 8.7 | (2.9) | 24 | (21) | 43 | (71) | | | Sodium adsorption ratio | 4.3 | (4.3) | .5 | (.1) | .9 | (.8) | 43 | (71) | | | Potassium, dissolved | 11 | (38) | 2.0 | (1.4) | 3.9 | (3.9) | 43 | (71) | | | Alkalinity, total (as CaCO ₂) | 306 | (310) | 56 | (64) | 137 | (123) | 43 | (71) | | | Sulfate, dissolved | 250 | (543) | 3.0 | (<5.0) | 17 | (16) | 43 | (71) | | | Chloride, dissolved | 260 | (250) | 2.3 | (.5) | 10 | (7.5) | 43 | (71) | | | Fluoride, dissolved | 1.4 | (5.8) | .2 | (.2) | . 4 | (.4) | 43 | (71) | | | Silica, dissolved (as SiO) | 58 | (78) | 35 | (13) | 45 | (44) | 43 | (71) | | | Dissolved sodids (residue at 180°C) | | (1040) | | (106) | | (194) | 0 | (27) | | | Dissolved solids, calculated | 992 | (996) | 134 | (104) | 233 | (217) | 43 | (69) | | | sum of constituents) | | | | | | | | | | | Nitrate (as N) | 24 | (21) | <.10 | (.02) | . 57 | (.88) | 43 | (71) | | | Iron, total rcoverable (ug/L) | | (1100) | | (<10) | | (50) | 0 | (29) | | | Iron, dissolved (ug/L) | 390 | (320) | <3 | (<3) | 13 | (9) | 43 | (42) | | | Manganese, total recoverable (ug/L) | | (50) | | (0) | | (50) | 0 | (23) | | | Manganese, dissolved (ug/L) | 860 | (880) | <1 | (<1) | 2 | (6) | 43 | (42) | | TABLE 2.--Ground-water-quality data: major ions, field measurements, and concentrations of iron, manganese, nitrate, and bacteria, by county #### EPLANATION OF GEOLOGIC UNITS Geologic unit codes used in this table indicate that wells are open to one or more of the following formations. | Geologic | Unit Code | <u>Formation</u> | |-------------|-----------|---| | Basalt | units: | | | 122 | SDLM | Saddle Mountains Basalt | | 122 | YKIM | Saddle Mountains and Wanapum Basalts, undivided | | 122 | WWPM | Wanapum Basalt | | 122 | CBRV | Wanapum and Grande Ronde Basalts, undivided | | 122 | GDRD | Gronde Ronde Basalt | | | | | | nconsolidat | ed units: | | #### Und | 110 | ALVM | Alluvium | |-----|------|------------------------| | 112 | GLCV | Glaciofluvial deposits | | 112 | RGLD | Ringold Formation | | TFMPE2-
ATURE
(DEG C) | | 18.0 | 17.2 | 15.7 | ::: | , | 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | , , | 20.0 | 26.6 | 5 | ; ; | 17.1 | | ' a | 22.7 | Š | 23.1 | S. | • | 'n | S. | 26.0 | ٠, | 17.2 | Š | 5 | • | 16.4 | |---|-------|---|---------------------------------------|--------------|----------------------------------|---|---|--------------|----------------------|--------------|---------|--------------|--------------|--------------|----------------------|--------------|--------------|--------------|--------------|--------|--------------|--------------|--------------|---|----------------|--------|-----------------|-----------|----------------| | PH
(STAND-
ARD
UNITS) | | 7.9
8.1 | 4.6 | | 7.7
8.0
8.0 | | # (\
20 00 | | :: | e 6 | 6 | 1 4 | 9.0 | 8.1 | . c | 7.8 | 8.8 | 800 | 7.7 | 7.4 | N 60 | 8.3 | 9 | , d | | | | • | 8.0 | | SPF-
CLFIC
COV-
DUCT-
ANCE
UMHOS | | 4 4 2 4 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 1210 | 431
1100
350 | | 404 | : | 397
9 | 440 | 432 | 363 | 362 | 339 | 338 | 389 | 390 | 400 | 787 | 190 | 162 | 348 | 320 | 310 | 565 | 7.5.2 | 301 | 291 | 396
520 | | ELFV. OF LAND SUBFACE DATUM (FT. AROVE | | 855.00 | 984.00 | 11 | 996.00 | | : : | : | 1050.00 | 053. | 053 | 962.00 | | | 26.0 | 1275.00 | • | 1220.00 | 115.0 | 5.0 | Š | 0 | 300 | , 0 | 420.0 | 420.0 | 710. | 710.0 | • | | DE0TH
OF
WELL+
TOTAL
(FEET) | | 415
865
865 | 237 | LC OC | 382
382
840 | , | 905 | 260 | 560
560 | 2.5 | 1210 | 5.57
5.50 | 1379 | 200 | 495
4561 | 1210 | 1030 | 1030 | 304 | 304 | 464 | 49 | 1940 | nc | | 480 | 342 | 342 | 380 | | CATE
OF
SAMPLE | | 60-10-18
52-02-00 | 0-40- | 2-0 | 53-12-00
56-09-18
56-08-24 | • | -104-0 | 9-04-0 | 42-04-27
55-08-02 | 2-08-1 | 3-03-1 | 44-00-00 | 3-05-1 | 8-03-1 | 56-03-13 | 3-02-6 | 2-08-3 | A3-05-19 | , ,,, | 3-03-1 | 0-10-1 | 3-05 | 2-08 | 00-0 | | 3-03-1 | 2-08-0 | 3-05-2 | 82-09-01 | | 6E0-
LOGIC
UNIT | AUAMS | ;;; | 121C9PV
121C9RV | ICH
ICH | 121CA9V
121CA9V
121CARV | | 121Capv | | :: | 122C9RV | 122CRRV | 1210437 | 122CaRV | : | 1215924 | 122CaRV | 122CaRV | 122C4RV | 22 | 2 | : | 26 | ~ (| יי
ער | 122WAPM | - 1 | 122WNPM | NON MOUNT | 1220497 | | SEQ. | | 01 | 0.1 | 93 | 01 | 7 | 10 | 0 | | 0.1 | • | . . | 16 | 10 | <u>.</u> | 16 | 10 | 5 | 01 | | 01 | ů | 6 | 7 0 | , , | | ű | ; | 01 | | LONS-
I-
TUDE | | 119 20 37
119 18 06 | 119 14 41 | 119 15 10 | 119 16 20 | | 70 01 PII | 19 10 3 | | 119 10 30 | • | 119 10 30 | 14 59 3 | 19 00 1 | 118 59 09 | 18 56 4 | 18 57 3 | 4 | 118 57 53 | , | 118 43 46 | 18 50 0 | 18 49 | 18 37 4 | 0 7 | | 118 23 45 | | 118 19 48 | | L ^ T -
I -
TUDE | | 46 48 15
45 47 40 | 46 46 37 | 46 46 19 | 46 44 22 | | 46 49 29 | 6 49 3 | | 46 49 28 | | 46 49 20 | 47.5 | 5 46 3 | 46 45 04
46 48 50 | 6 4 9 | 5 47 4 | 7,7 | 46 44 15 | | 46 48 42 | 6 47 5 | 64 | 0 4 4 4 0 4 6 4 4 6 6 4 6 6 6 6 6 6 6 6 | 46 46 50 | | 46 49 24 | , | 46 45 12 | | LOCAL
IOFNT-
I-
FIED | | 15/29F-08501
15/29E-15001 | 15/29F-24601 | 15/295-24601 | 15/286-35001 | | 15/295-03001 | 15/20F-04A01 | | 15/295-04402 | | 15/295-04401 | 15/37E-12L01 | 15/375-23401 | 15/30F-36A01 | 15/315-05-01 | 15/315-08401 | 10031-316731 | 15/31E-31901 | | 15/326-01001 | 15/325-07301 | 15/325-08501 | 15/335-02401 | 15/33E-15402 | | 15/35F-02501 | | 15/36F-Z9N0101 | Table 2.--Continued | POTAS-
SIUM,
DIS-
SOLVED
(MG/L | | | 0 1 | 11 | ,
, | 4.4 | 6.0 | 4.7 | 4.7 | 1.6 | 5.9 | | | 13 | | | 80 | e 8 | : 1 | 5.9 | 4.9 | 4.6 | 3,1 | 9.7 | 13 | 0.1 | 11 | 8.6 | 4 | - c | • | 7.0 | 89 | 3.7 | 4. u | | • | • | • | ໝ
ໝ
ໝ | |--|-------|------|----------------|-------------|--------------|-------------|----------|--------------|----------|----------|--------------|--------------|--------------|--------------|----------|----------|--------------|----------|--------------|--------------|--------------|--------------|--------------|--------------|----------------|----------|-----|--------------|--------------|--------------|---|---------------|--------------|-------------------------|----------------------|----------|-----|--------------|-----------------|-------------------| | SODIUM
AD-
SORP-
TION
RATIO | | | | ۲.۶
د د | n - | 1.6 | 1.2 | 1 60 | 1.1 | 84 | 1.0 | 8.2 | 5.0 | 8.5 | 7.2 | 0.6 | 80 | 7.2 | 9.5 | 1.8 | 2.1 | 8. | 1.0 | 1.8 | 3.0 | • | 4.6 | • | đ, | 4.0 | • | 9.0 | ٠ | 9. | 7.1 | : | 4. | ::
: | 7.1 | 1.50 | | PERCENT
SOJIUM | | i | # • | 15 | δ0 3 | 39 | 6 | 242 | 28 | 66 | 30 | 93 | 73 | 48 | 81 | 9 | 86 | 83 | : | 45 | 20 | 46 | 31 | 4 | 9 6 | | 72 | 87 | - (| ° - | • | 70 | 99 | 21 | 4 - | : | 12 | * č | 9 5 | 34 | | SONTUM.
DIS.
SOLVED
(MF/L
AS NA) | | ; | * (| r
P | t 4 | £ 1 | 13 | 4 | 30 | 225 | ž | 7.7 | 70 | 78 | 78 | 69 | 88 | 49 | 66 | 7 0 | 42 | 36 | ž, | 4] | 4 n | n
c | 69 | 78 | <u>8</u> | | • | 7.2 | ر
د ر | 9 ! | - 6 | <u>1</u> | 14 | 25. | 0 9 | 14 | | MAGNE-
SIUM.
DIS-
SOLVED
(MG/L
AS MG) | | ; | * (| 7.7 | • • | 1 4 | 45 | 22 | 19 | ٥. | 15 | 1.8 | 4.8 | 1.8 | 3.5 | 1.2 | 2.5 | 3.3 | 0.0 | 12 | 15 | e. | 16 | 12 | 6 u | U • C | 4.9 | 1.1 | a . | , .
, . | • | 0 | 4.6 | 12 | ٠, در
و در | 2 | 20 | 13 | 7 . | 20 | | CALCIUM
DIS-
SOLVEN
(MG/L
AS CA) | | ď | 0.0 | · · | 01 | 31 | 110 | 53 | 32 | 1.8 | 24 | 4.2 | 7.6 | 3.8 | 3.6 | 8°
8° | 6.4
 6.7 | 6.0 | 19 | 13 | 18 | 20 | 20 | 4 0 | • | 9.6 | 3.7 | - F | 0.0 | • | e. 6 | 01 | 31 | ~ « | ŝ | 58 | 17 | ~ o | 2 4
2 4 | | HARD-
NESS.
NONCAR-
BONATE
(MR/L
CACO3) | AUAWS | • | - | - 0 | . | · c | 273 | ß | 16 | 0 | c | 0 | c | 0 | 0 | c | c | 0 | 0 | 0 | c | 0 | 0 | 0 | c | • | 0 | 0 ! | 201 | ה מ
י | • | 0 (| C | 0 (| 137 | 7 | 46 | 0 0 | - 6 | 00 | | HAPD-
NFSS
(MG/L
AS
CACO3) | | | 133 | 101 | 7 4 5 | 135 | 539 | 163 | 158 | 4 | 122 | 18 | 39 | 17 | 23 | 12 | 23 | 30 | 23 | 16 | 85 | 80 | 116 | 66 | 63 | î | 4 | 41,0 | 505 | 3.4
4.6 | • | E) + | 4 (| 121 | 107
707 | | 227 | 96 | 26 | 192 | | COLI-
FORM,
FECAL,
UM-MF
(COLS, | | | ! | | | 1 | ; | ; | ! | : | : | | | ; | | | : | ₹ | ; | 1 | ; | ; | : | 1 | 1 1 | | : | : | : ` | ; ; | | ! | : | ; ; | 7 : | | ۰1 | ; ; | 1 7 | 11 | | OATE
OF
SAMPLE | | | 07100 | 20-20-20 | 52-04-00 | 53-07-00 | 71-09-23 | 52-02-00 | 53-12-00 | 56-09-18 | 3-2 | 25-09-02 | 70-10-57 | 30-04-06 | 45-04-51 | 55-08-02 | 82-08-10 | 83-03-15 | 44-00-00 | 25-07-00 | 83-05-19 | 59-03-11 | 56-03-13 | 83-05-27 | 83-05-26 | 01-00-30 | 3 | 6 | | 60-10-19 | | 83-05-20 | 60-60-68 | 70-20-22 | 82-03-15
82-08-07 | | 4., | 10 1 | , , | 90-80-28 | | LOCAL
INFNI-
I-
FIER | | 1000 | 10/10/10/07/11 | 1061-162761 | 15/295-24501 | 40013 7. 34 | | 15/285-24601 | | | 15/29F-35>01 | 15/29E-03C01 | 15/296-03J01 | 15/29F-04401 | | | 15/29F-04802 | | 15/205-04401 | 15/29E-27Pn1 | 15/30E-12Lº1 | 15/305-23401 | 15/30E-36f01 | 15/315-05601 | 15/31F-09J01D1 | 1 (| | 15/315-16501 | 17/31E-31=01 | 15/32F-01901 | | 15/325-07.001 | 15/32E-08F01 | 1 × 7 3 5 E = 0 C B 0 1 | 15/33F-UCA0101 | 30.01 | | 15/356-02001 | 15/34F_298(010) | 10/301 - 60/0/101 | Table 2. -- Continued | FLUO-
PIDE:
DIS-
SOLVED
(MG/L
AS F) | 4 | ထွေထ | , rů | \$ | 4 0 | . | ~ • | 1 | | 5.0 | : | er e | 0 !
• 1 | 1.0 | | ٥. | 01 | 1.7 | 2•3 | 2.3 | 2.8 | • | 1.6 | 8. | 1.7 | €. | ٥, ۱ | • | €, | r • | 4 r. | |---|--------------|--------------|--------------|----------|--------------|----------|--------------|--------------|--------------|--------------|----------|--------------|---------------|--------------|--------------|--------------|----------------|----------------|--------------|----------|--------------|--------------|--------------|--------------|--------------|--------------|----------------|-------------|----------|--------------|----------------------| | CHLO-
RIDE.
DIS-
SOLVED
(WG/L
AS CL) | ç | 16 | 7.1 | 8 | 55 | 12 | 11 | 16 | 4 4 | 12 | 16 | 4. | 16 | 14 | 12 | 8.2 | • | 2 2 | 10 | 11 | = 5 | 4
C C | 0.6 | 8.6 | | 11 | 15 | o
† | 36 | 4.1 | 9.5
16 | | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | [4 | 4 4 |)
(4) | e
E | 310 | 4 | 32 | ž3 | 9 9 | 88 | 23 | 31 | t 4 | 25 | 35 | 25 | <u>د</u> د د د | 5. 4
-1 € | € | 56 | 25 | 130 | 10 | 1.3 | 17 | 14 | 16 | Ç. | ~ ' | 7.7 | 11
FS | | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | ł | 1 1 | : | : | :: | ; | : : | : | : : | : | ! | 158 | 1 | 1 | 116 | 1 | 1 | 135 | 150 | 150 | 151 | 176 | : | 142 | 139 | 130 | 128 | 0 | 133 | 44 | 250 | | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | 7 | 174 | 194 | 198 | 266
158 | 142 | 144
139 | 149 | 151 | 150 | 150 | ; ; | 162 | 149 | ; | 141 | 144 | : : | 1 | ; | ; | : : | 141 | ; | 1 | ; | 1 1 | ; | : | : : | 176 | | CAR-
BONATE
IT-FLD
(MG/L
AS | ł | 1 1 | : | 1 | :: | ; | : : | ; | ; ; | 1 | : | 39 | ; | 1 | 8.0 | : | ; ' | | 9. | 15 | 15 | • | • 1 | • | 6. | 0. | œ. | • | ė, | • | ! 0. | | CAP-
BOVATE
FET-FLD
(M3/L
AS CO3) | 41) 445 | · ~ c | | ; | 00 | | 00 | • | ١٥ | | 70 | ; ; | : : | 9 | ; | 0 | 0 | : : | ; | ! | ! | ; ; | O | ; | ; | ; | ! | ! | ; | : : | c | | BTCAR-
BONATE
IT-FLD
(W3/L
AS
HC03) | ; | 1 1 | : | : | ! ! | ! | ; ; | ; | ! ! | 1 | ; | 111 | 117 | ! | 129 | : | 1 | 156
168 | 151 | 156 | 148 | 4100 | 1 | 172 | 164 | 156 | 139 | 27. | 157 | 176 | 304 | | RICAR-
AONATE
FET-FLD
(MG/L
AS
HCO3) | 196 | 198 | 237 | 558 | 324 | 173 | 176
169 | 170 | 1.5 | 193 | 162 | ; ; | 197 | 170 | ; | 172 | 175 | : : | : | ; | ; | ; ; | 150 | ; | ; | : | 1 | ; | : | 1 1 | 214 | | DATE
OF
SAMPLE | ر ا
در ا | 52-02-00 | 52-04-00 | 53-07-00 | 71-09-23 | 53-12-00 | 56-09-18 | 55-08-02 | 70-10-27 | 42-04-27 | 55-08-02 | 82-08-10 | 44-00-00 | 52-07-00 | 83-05-19 | 59-03-11 | 56-03-13 | 83-05-26 | 82-08-10 | 83-05-19 | 83-05-26 | 92-08-10 | 60-10-18 | 83-05-20 | 82-08-09 | 42-08-07 | 83-03-16 | 10-00-29 | A3-03-16 | 83-05-24 | 62-05-01
82-18-06 | | LOCAL
IOFNI-
I-
FIFR | 15/206-08:01 | 15/24E-15901 | 15/296-24501 | | 15/285-24101 | | 15/28E-35501 | 15/295-03001 | 15/295-03/01 | 10440-147761 | | 15/295-04402 | 15/29E-04-101 | 15/295-27001 | 15/30E-12L01 | 15/306-23401 | 15/305-36401 | 15/315-09-0101 | 15/316-08401 | | 15/31E-16n01 | 15/31E-31901 | 15/32F-01201 | 15/325-07001 | 15/325-08501 | 15/335-02001 | 15/335-0240101 | 20251-15/51 | | しいこいー ジャラントし | 15/36F-29Nn1D1 | | NITRO-
GEN.
NOZ+NO3
DIS-
SOLVED
(MG/L
AS N) | | ł | : | ; | 11 | ; | ; | ; | : | ; | ; | ; | ; | ! | : | .36 | •58 | ; | ! | 1.3 | ; | • | # C | | 4,10 | <.10 | 12 | 9.5 | : | .19 | .26 | 1.5 | 1.6 | 25 | 12 | 6: | 1.2 | : . | 3.6 | |--|-------|--------------|--------------|----------|------------|------|--------------|-----|----------|--------------|------------|--------------|----------|----------|----------|--------------|--------|--------------|------------|------------|----------|----------|--------------|--------------|----------|--------------|----------|----------|--------------|--------------|--------------|----------|----------------|--------------|----------|--------------|----------|----------------|------------| | NITRO-
GFN•
NOZ+NO3
TOTAL
(MG/L
AS N) | | ; | | • | : : | 9,00 | ; ; | : | ; | : | : | ; | ; | ; | ţ | : | ; | ; | ! | ; | ; | ! | ! ! | ; | : | ; | : | : | 1 | ; | : | ; | : | : | : | ł | ! | : 1 | ! | | NITRO-
GEN.
NITRATE
TOTAL
(MG/L
AS NO3) | | 01. | 06. | : | 3.1 | ; | 0.7.0 | 4.7 | 7.7 | : | ì | •20 | 00. | .10 | ! | : | ; | ; | 3.1 | 1 | 1.2 | 1.1 | ; | ; ; | ; | ; | ; | ! | .90 | : | ; | : | ! | } | ; | ; | ! | •50 | : | | SOLIDS. SUM OF CONSTITUENTS. DIS. SOLVED | | 301 | 1 | 315 | :: | 818 | : : | ; | ; | ! | 285 | 288 | 291 | 285 | : | 352 | 368 | 281 | : | 250 | 922 | 1 6 | 263 | 291 | 303 | 306 | 459 | 463 | 237 | 258 | 247 | 503 | 237 | 562 | 274 | 205 | 202 | 256 | 190 | | SOLIDS.
RESIDUE
AT 180
DEG. C
DIS.
SOLVED
(MG/L) | 40 | 292 | 318 | 278 | 294
314 | 864 | 292 | 290 | 069 | 268 | 594 | 276 | 302 | 287 | 182 | ; | 1 | 301 | 252 | ! | 556 | 278 | : : | ; | ; | ; | ; | ; | 238 | 1 | ; | ; | ; | : | : | ; | ! | : | : | | SILICA.
DIS-
SOLVED
(MG/L
AS
SIO2) | 40AMS | 65 | ! | a:
a: | 11 | 51 | : | ; | ; | ; | 54 | 56 | 57 | | : | 4 | дъ | 37 | ! | 53 | | 1 | \$ 4
\$ 6 | 23 | 65 | В. | 45 | 45 | 95 | 65 | 46 | 44 | 56 | 41 | 43 | 44 | 4 4 | 7 t | <u>ب</u> ر | | DATE
OF
SAMPLE | | 0-10-1 | 5-02-0 | 1-10-0 | 52-04-00 | ĭ | 7 | 7 | 58-09-1P | S | 55-08-02 | 70-10-27 | 39-04-06 | 42-04-27 | 20-80-66 | 82-04-10 | 3-03-1 | 44-00-00 | 2-01-0 | 3-05-1 | 59-03-11 | 55-03-13 | 12-0-54 | 82-08-10 | 93-05-19 | 93-05-56 | 01-60-Z8 | 83-03-14 | 60-10-1A | 83-05-20 | ĸ, | 82-08-01 | er, | (1) | 83-03-16 | 82-08-07 | A3-05-24 | 62-05-01 | 07-67-70 | | LOCAL
IDENT-
FIFP | | 15/29E-08E01 | 15/285-15001 | | 15/2824601 | | 15/285-24101 | | | 15/29E-35P01 | 5/29E-03C0 | 15/295-03J01 | 5/50 | | | 15/295-04402 | | 15/29E-04H01 | 5/29E-27P0 | 5/30E-12L0 | 5/3 | 9/3 | 2,6 | 15/31E-08W01 | | 15/31E-16001 | 5/315 | | 15/325-01001 | 15/325-07001 | 15/32E-08501 | | 15/33E-02A01D1 | 15/33F-15N02 | | 15/35E-02001 | | 15/36E-28N01D1 | | | MANGA-
MESE, MANGA-
TOTAL MESE,
TOTAL DISE,
FRABLE SOLVED
(UG/L (UG/L
AS MN) AS MN) | | • | | 02 | | | | : | | | | | <20 | | !! | | | : | | | <10 | : | 1 | u | : ; | ` | ; | | | • | | | · ▽ | | | | | | | • | |---|-------|-------------|-----------|----------|-------------|--------|--------|-------------|--------|--------|-------------|------------|--------------|------------|--------|--------|--------------|---------------|------------|------------|--------------|------------|------------|------------|--------------|---|------------|--------------|--------------|--------------|-----------|-----------|-----------|-----------|-----------|-------------|----|--------------|--------|---| | MAN
NES
1PON• TOT
01S- PEC
SOLVED FRA
(UG/L (UG/L | | ; | ; | ; | ; | : | ; | ; | : | 0 | : | : | : | ! | ; | 20 | ž | 98 | : : | : | 20 | ; | ; ; | 5 6 4 | 6 | ć | 5 6 | <u> </u> | | 1 | 12 | ;€ | \$ | (3) | \$ | | ۲. | 7: | - | | | IRON.
TOTAL
RECOV-
ERABLE
(UG/L | | 610 | ! ; | 20 | ; | ! | 250 | ; | ; | ! | ! | 20 | 30 | 50 | 40 | ; | ; | ; | : | ; | ; | 400 | 40 | : : | : | İ | 1 : | : | ; | 10 | ; | ; | ; | ; | ; | | ; | ! ! | ; | • | | DATE
OF
SAMOLE | AOAMS | 0-10-1 | 2-05-0 | 71-10-06 | 2-04-0 | 3-07-0 | 1-00-2 | 52-05-00 | 3-15-0 | 4-09-1 | 6-08-2 | 5-08-0 | 70-10-27 | 0-40-6 | 2-04-2 | 5-08-0 | 2.00. | 3-03- | 4-00- | 2-07- | -05 | 8-03-1 | 6-03-1 | 3-60-6 | 82-08-10 | | 3-03-1 | 0 0 | 3-03-1 | -10-1 | 3-05-2 | 2-08-0 | 82-08-07 | 3-03-1 | 2-08-0 | ,
,
, | m | 2-04-0 | 3-60-5 | ֡ | | LOCAL
TOENT-
TEP | | 5/28E-08E01 | /28E-1500 | | 5/28E-24601 | | | 5/28E-24L01 | | | S/28E-35P01 | 5/29F-03C0 | 15/295-03/01 | 5/29E-04A0 | | | 15/20F-04A02 | 7.5.4.0.4.0.0 | 5/29E-04H0 | 5/29F-27P0 | 15/30E-12L01 | 5/30E-23A0 | 5/30E-36A0 | 5/31E-05L0 | 15/31E-04001 | | 2471 21672 | 15/315-15001 | 7, 11, 11, 1 |
15/32E-01R01 | 5/32E-07J | 5/32E-08F | 5/33E-02A | /33E-02A0 | 33E-15N02 | | | 15/35E-02001 | | | Table 2.--Continued | TEMPE9-
ATURE
(DEG C) | | P 60 | 15.0 | - C | 17.0 | 11 | ; | - 4 | 23.0 | : | ın, | 16.0 | . سر | | 1 1 | 25.09 | 20.1 | 23.4 | • | | 6 | ٥. | 17.6 | ė v | 'n | • | 17.2 | | 14.3 | |---|-------|--------------------------------|---|---------|--------------|----------------------|--------------|----------------------|--------------|--------------|---------|----------------------|---------|--------------|------------|--------------|----------------------|----------------|--------------|----------------|--------------|---------|--------------|----------------|--------------|----------------|--------------|-------------|---------------------| | DH
(STAND-
ARD
UNITS) | | 7.7 | • · · · · · · · · · · · · · · · · · · · | 4.4 | | 7.6 | • | . e. | | • | • | . o | | | • | | 7.9 | 8.1 | | | • | • | 7.8 | • | • • | • | • | • | 8.5 | | SPF-
CIFIC
COV-
DUCT-
ANGE | | 520
410 | 435
394
710 | 960 | 508
508 | 980
888 | 1087 | 1231 | 368 | 467 | 373 | 404
350 | 371 | 426 | 415 | 320 | 370
341 | 313 | 266 | 375 | 287 | 777 | 240 | 255 | 261 | 262 | 381 | | 348 | | ELFV. OF LAND SURFACE DATUM (FT. ARRIVE NGVD) | | 1012.00 | 1020.00 | 1020.00 | • | !! | ; | 0.080 | 1117.00 | • | 1190.00 | 345.0 | 1365.00 | • | 1 4 | 415.0 | 1300.00 | 475 | 378.0 | 0 | 655.0 | 0 | _ | , c | 1575.00 | 1583,00 | 1685.00 | 1685.00 | 1560.00 | | DEPTH
OF
WELL•
TOTAL
(FEET) | | 390 | 179 | ~ (| 304 | 12 | 16 | 1043 | 99 | 392 | 392 | 392 | 1057 | . ∿ | 23 | * * | 04°C | 1407 | 1310 | 1545 | 600 | 600 | 400 | 004 | 950 | 0 | • | o o | 200 | | DATE
OF
SAMPLE | | 83-05-24
82-09-08 | 71-09-29
82-08-12 | 7 | 17 | 51-08-27
52-07-15 | | 52-06-02
83-05-27 | | | 7 | 61-05-04
82-08-10 | 1.7 | 7 | | 2 - 2 | R2-09-08
R3-03-15 | 82-08-09 | 9 6 | 3-0 | 2-0 | (7) | ٩ | ש
ה
ה | 83-05-24 | 3-05-2 | 82-08-05 | 3-00-6 | 83-05-25 | | GEO-
LOGIC
UNIT | ADAMS | 122CBRV
122GDRD | | 12259LW | ŭ | 11 | ; | 122092 | | ! | ! | 72CB | 122CPRV | 2109 | ~ (| u N | 122WNPW
122WNPW | 1220997 | 122098 | 122CBRV | 122WNPM | 122WNPM | 122MVPM | I Z C W Z F R | 122CARV | 122CARV | 122CARV | 7266480 | 122WNPM | | S NO | | 01 | 22 | 3 | 5 5 | 01 | 0.1 | 5 | | 01 | | 6 | ; | 0.1 | 7 | 7 0 | 01 | 01 | 2 | | 0.5 | | 0
10 | 2 | 5 | 10 | 0.1 | 7 | 5 | | LONS-
I-
TUDE | | 118 18 48
118 17 55 | 118 08 59
119 19 37 | r
c | 119 20 09 | 9 14 0 | 119 13 47 | 0 0 0 | 119 09 26 | 9 05 2 | | 119 00 16 | • | 119 01 11 | | 118 23 13 | 118 56 00 | 118 46 08 | 4 | . w | N | | 118 28 57 | 71 95 911 | 67 0 | 118 27 42 | 8 20 | 110 17 46 | *
• | | LAT-
I-
TUDE | | 46 45 12
46 45 07 | 46 45 39
46 54 44 | r
u | 46 53 04 | 0 64 9 | 46 49 45 | 5.05.7 | 46 49 45 | 6 52 5 | | 46 51 08 | • | 46 49 31 | r
U | 62 26 64 | 46 49 25 | 46 53 46 | 4 55 4 | 52 | 6 52 5 | | 46 52 12 | 20 03 77 | | 04 64 94 | 54 4 | 16 63 37 | 200 | | LOCAL
JOENT-
I-
FIER | | 15/34F-28N0131
15/34E-33A02 | 15/37E-27401
16/2¤E-04301 | | 16/28E-08P01 | 16/29E-06402 | 16/295-06001 | 16/295-34001 | 16/295-34901 | 16/30E-18A01 | | 16/305-2640201 | | 16/30E-35001 | | 10/315-14401 | 16/31E-33P01 | 14/325-1100101 | 16/325-14001 | 16/32F-18G0102 | 16/33F-17902 | | 16/346-13002 | 14 /365 -31001 | 16416-366701 | 16/35F-32Nn1D1 | 16/34E-06902 | 1010011-000 | 10/ 30/ - 11/11/10/ | Table 2. -- Continued | POTAS-
SIUM.
DIS-
SOLVED
(MG/L
AS K) | | 0 0 80
0 0 40 | 13
9.2
26
17
16 | 20
20
12
12 | 2.2
2.2
8.5
11
3.9 | 0 | 20 M L W L W L W L W L W L W L W L W L W L | 4 0 4 0 0
0 0 0 0 | | |--|----------|--|--|---|--|--|--|--|--| | SODIUM
AD-
SORP-
TION
RATIO | | 0.01 | 2 × × × × × × × × × × × × × × × × × × × | 3.0
4.2
11.
3.5 | 15.9
15.8
5.8 | | 3.2
3.2
3.3
10 | ៳ ៎ ៎ ហំហំ | พ์พ์จ์ผล | | PERCENT | | 41
35
35
16 | 18
25
76
46 | 4
53
8
63
7
63 | 37
27
91
78
45 | 32
78
78
37 | 66 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 27
116
119 | 100 | | SONTUM.
DIS-
SOLVED
(MG/L
AS NA) | | R 4 F 5 C | 33
44
46
106
102 | 120
161
81
81 | 32
26
44
44 | 32
32
32 | 47
77
78
20 | 20
9.6
9.1
12 | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | MAGNE-
SIUM.
DIS-
SOLVED
(MG/L
AS MG) | | 19 | 39
37
3.2
28
29 | 37
35
.5 | 19
25
.1
2.6 | 25
1.7
1.9
12 | 3.4
4.8
1.1 | 13
9.1
9.3
10 | 11
15
13
13
13 | | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | ծ
Տ
Տ
Տ | 56
58
1.8
3.0 | 15
18
2.0
6.8 | 17
6.7
7.1
22
23 | 12
14
17
2.9
23 | 2 2 2 3 3 3 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 8 6 6 F F | | HAPD-
NESS.
NONCAP-
PONATF
(MG/L
CACO3) | A D & 4S | 00004 | 37
6
0
0 | 0000 | C M O O O | 40000 | 00000 | 00000 | 0 4 4 6 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | HARD-
NESS
(MG/L
AS
CACO3) | | 157
151
148
152
316 | 320
282
27
253
244 | 317
289
7
11 | 116
148
5
28
112 | 145
24
26
104
104 | 43
51
62
12 | 1111
100
101
106
110 | 115
159
163
157
151 | | COLT-
FORM.
FECAL.
0.7
UM-MF
(COLS./ | | 11111 | 22111 | 11111 | 11111 | 11112 | 11111 | 21211 | 11411 | | 1)ATE
OF
SAMPLF | | 83-05-24
82-09-09
83-05-24
71-09-29 | 83-03-15
83-03-15
58-03-11
51-08-27
52-07-15 | \$1-08-27
\$2-06-02
\$3-05-27
\$1-05-04
\$5-06-00 | 60-10-18
61-05-04
82-08-10
83-05-19
57-04-12 | 57-04-24
82-09-09
83-05-24
82-09-08 | 82-08-09
83-05-19
83-05-27
83-05-26 | 83-03-17
82-08-09
83-05-24
82-08-07
83-05-24 | 83-05-27
82-08-05
83-05-25
82-08-05 | | LOCAL
Infint
I –
F IF ? | | 15/36F-28N01D1
15/34F-33A02
15/37E-27H01
16/28F-04R01 | 16/28F-05W01
16/28E-08P01
16/29F-06W02 | 16/29E-06P01
15/29E-34D01
16/29E-34201
16/30E-18A01 | 16/30F-25A02D1
16/30E-35301 | 16/31E-14K01
16/31E-33°01 | 16/32F-11D01D1
16/32F-14001
16/32F-19G01D2
16/37F-17902 | 16/34E-13P02
16/35F-31901 | 16/35F-37N01D1
16/35E-06902
16/36F-11H01D1 | | FLUO-
PIDE•
DIS-
SOLVED
(MG/L
AS F) | ာ တွေ | | 111000 | | 1.6 | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | พรงคู่คู | ๛๛๛๛๛ | |---|---|--|---|--|--|--|--|--| | CHLO-
RIDE.
DIS-
SOLVED
(WG/L
AS CL) | 12
6•1 | 12 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19 | 10 00 m m n c | 22 22
22 22
11 2 9 9 | 27
7.6
6.8
12 | 10
13
11
2.8 | ************************************** | 6.3
23
26
13
11 | | SULFATE
DIS-
SOLVED
(MS/L
AS SO4) | 2 H 2 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 4 H H G G | 616
140
140 | K (| 7.5
19
19
13 | | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | 23.7
22.6
40.0 | 270 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 | 150 | 133
140
141 | 133
130
135
155
141 | 144
122
118
126 | 127
115
114
135 | | ALKA-
LINITY
FIELD
(MS/L
AS
CACO3) | 111 | 191 | 183
184
1661
1769 | 118 | 131 | 11111 | !!!!! | 11111 | | CAR-
BONATE
IT-FLD
(MG/L
AS
CO3) | 000 | | | 26
12 | 1.84.0 |

42 | ••••• | | | CAR-
RONATE
FET-FLD
(MG/L
AS CO3) | ADAKS | °! !!° | 1 0 1 1 9 1 | 00110 | ° | 11111 | ::::: | 11111 | | AJCAR-
BOUATE
IT-FLD
(MG/L
AS
HC03) | 293
241
275 | 336
339
266 | 509 | 127
160 | 155
168
174
174 | 159
156
178
115 | 172
142
145
148 | 152
139
139
163
174 | | AICA2-
RONATE
FET-FLD
(MG/L
AS
HCO3) | 111 | 233 | 554
5592
170
170 | 152 | 150 | 11111 | 11111 | 11111 | | DATE
OF
SAMPLE | 83-05-08-08-08-08-08-08-08-08-08-08-08-08-08- | 71-09-29
82-08-12
83-03-15
83-03-15
53-03-11 | | 60-10-18
61-05-04
82-08-10
83-05-19
57-04-12 | 57-04-24
82-09-09
83-05-24
82-09-08
83-03-15 | 82-08-09
83-05-19
83-05-27
83-05-26 | 83-03-17
82-08-09
83-05-24
92-08-07
83-05-24 | 83-05-27
82-08-05
83-05-25
82-08-05
83-05-25 | | LOCAL
INENT-
I-
FIFR | 15/36F-28N0101
15/35E-33402 | 15/37E-27H01
16/29E-04H01
16/29E-05H01
16/29E-05H01 | 16/29E-06901
16/29E-34901
16/29E-34-001
16/30E-18801 | 16/30F-26A0201
16/30E-35901 | 16/31E-14K01
16/31E-33001 | 16/32F-11D01D1
16/32F-14n01
16/32F-18G01D2
16/33F-17R02 | 16/34E-13902
16/35E-31901 |
16/35F-32NN1D1
16/36E-06902
16/36F-11H01D1 | | NITRO- GEN+
GEN+ DOZ+NO3
NOZ+NO3 DIS-
TOTAL SOLVED
(MG/L (MG/L
AS N) AS N) | | | 1.2 | 7.5 | ហំ | 111 | 1 | | • | ; | | | 523 | | | 1 | | | , | 05. | • | • | 33 | 1.8 | • | 9 | 9 | | |---|-------|-------------------------------|----------------------------------|----------|--------------|----------------------|--------------|------------|------------------------------|------|------|----------------|----------------------|-----|--------------|----------------------|----------------|---------------|--------------|--------------|----------|--------------|--------------|-----------------|----------------|--------------|----------|----------------| | NITRO-
GEN.
NITRATE
TOTAL
(WG/L | | : : | ::: | ; | ! 4 | nc ! ! | ł | : : | 09. | 2.88 | 1.7 | ! | 1 2.9 | 3.1 | ; ; | 111 | : | 1 | : | ! ! | ; | : | ! | 1 1 | ł | ! ; | ! | | | SOLIDS.
SUM OF
CONSTI-
TUENTS.
DIS-
SOLVED | | 343 | 322
267
431 | 470 | 461 | 95 ! ! | ; | 1 00 | 298 | 249 | 266 | 308 | 662 | 1 | 264 | 255
255
255 | 241 | 248 | 294 | 204 | 204 | ! | 173 | 184 | 101 | 227 | 229 | 900 | | SOLIDS.
PESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | ñ | 11 | 302 | 1 | ן מ | 3:: | ; | : : | 294 | 752 | 27.1 | ! | 274 | 566 | | 11 | ! | 1 1 | : 1 | ! ! | ! | ! | : 1 | : | ; | ; | ; | ; | | SILICA.
DIS-
SOLVED
(MG/L
AS
SIO2) | ADAWS | | 76
52
54 | 53 | 56 | ; | 1 | ¦ | 62 | 53 | 53 | 66 | 6. | | | 5.
59. | | | | y 4
v ec | 4 | 4 | 67 | * * | | . 4
. 10 | | | | DATE
OF
SAMPLE | | 83-05-24
82-09-08 | 83-05-24
71-09-29
82-08-12 | 83-03-15 | 83-03-15 | 51-08-27
52-07-15 | _ | ~ ~ | 61-05-04 | 0-1 | | | 73-05-19
57-04-12 | | | 82-09-08
83-03-15 | | | | 82-08-09 | 83-03-17 | 85-08-09 | 83-05-24 | 83-05-24 | 83-05-27 | 92-08-05 | 83-05-25 | 82-08-05 | | LOCAL
IDENT-
I-
FIER | | 5/36E-28401D1
15/36E-33A02 | 15/37F-27H01
16/28E-04901 | | 16/28E-05N01 | 9/292-0 | 16/29E-06P01 | 6/29F-34D0 | 16/295-34P01
16/30E-18A01 | | | 16/30E-26A02P1 | 16/305-35901 | ; | 16/31E-14Knl | 16/315-33P01 | 14/32F-1100101 | 14.705-14.001 | 16/325-14091 | 16/33E-17902 | | 16/34E-13R02 | 10016-336771 | 94 TS - 36 C VO | 16/35F-32N01D1 | 16/36E-06802 | | 16/36F-1140101 | Table 2.--Continued | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS WN) | | 4 6 | 3 4 | ; | | ۱ م | ; | ; | ; | 4- | : : | 1 | ; | ; u | n n | ' ! | ; | m | un m | • | ₽: | 01> | ٠, | ; T | - | , | 5; | 77 | • | m · | ₽, | ° 7 | |---|-------|----------------|------------|------------------------------|------|--------------|------------|------|--------------|--------|--------------|--------|------|------------------|-------------------|--------------|-------|--------------|--------------|-------|----------------|----------|----------|----------------|------|--------------|------------|--------------|----------------|--------------|--------|----------------| | MANGA-
NESE,
TOTAL
RECOV-
EVABLE
(UG/L
AS MN) | | : ; | 11 | 027 | 1 | : : | : | : | ! | ! ! | ! | : | ; | ; | : : | 1 1 | ; | ; | : : | ; | ; | ! | ; (| ; | ; | ; | ! | : : | ł | ; | : | ! ! | | IRON,
DIS-
SOLVED
(UG/L
AS FE) | | • | 21 | ! ® | 12 | 9 1 | : 1 | ; | 1 | | 1 | : | ; | ! : | 13 | e i | : | 16 | | 34 | € | 30 | 8 × 6 | 6 | ſ | 6 | ~ (| 2,0 | | | | 13 | | IRON,
TOTAL
RECOV+
ERABLE
(UG/L
AS FE) | | ; ; | 1 2 | 9 ! | ! | 1 6 | : 1 | ; | ł | ! ! | <10 | ! | 40 | <10 | : : | <10 | 94 | ! | ! ! | ; | ; | ! | <u> </u> | ; | ! | ! | ! | !! | i | ! | : | : : | | DATE
OF
SAMPLE | ADAMS | 83-05-24 | 5-2 | 82-08-12 | 3-03 | 83-03-15 | 1-03 | 2-07 | 51-09-27 | | 1-05 | 5-06 | 0-10 | 1-05 | מים
מים
מים | 57-04-12 | 7-04- | 2-00- | 83-05-24 | 3-03- | 9 | ב
הנו | 5 5 | 9 | 3-03 | 2-08 | 3-05 | 83-05-24 | 3-05-2 | 2-08-0 | 3-05-2 | 82-08-05 | | LOCAL
IDENT-
I-
FIER | | 15/36E-28N01D1 | 100070 | 15/3/E-27H01
16/29E-04R01 | | 16/28E-05N01 | 6/29E-06M0 | | 16/29E-06P01 | 6/29F- | 16/29E-34P01 | 6/30E- | | , מכסייים בסרייי | 16/30E-26A0201 | 16/305-35001 | | 16/31E-14K01 | 16/315_33001 | , | 16/32E-11901D1 | | 6/32E- | 16/33E-17R02 | | 16/34E-13P02 | i i | 16/355-31801 | 16/35E-32N01D1 | 16/36E-06402 | | 16/36E-11H01D1 | | TFMPE9-
ATURE
(DEG C) | | 14.9
23.5
14.8
14.6 | 14.0
14.0
18.5
27.3 | 21
24
26
30
30
30
50
50 | 19.1
14.7
13.8
15.3 | 19.6
12.2
11.9
21.6 | 19.4
15.5
19.5
36.6 | 18.6
17.7
17.7
17.3 | 118.
118.7
118.7
118.7
118.7 | |---|-------|--|--|--|--|---|--|--|--| | PH
(STAND-
ARD
UNITS) | | 7.6
8.3
7.7 | 8 8 8 8 8 8
6 4 4 6 6 6 | α α α α ν
ο ο ο α α α | 8.7.7
7.7.7
7.7.7 | 8 88
8 88
8 88 | 8 8 7 8 8
8 0 9 11 C | 0 0 0 0 0
0 0 0 0 0 | 7 8 8 7 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 | | SPE-
CIFIC
CON-
DUCT-
ANCE
WMHOS | | 790
301
976
625
293 | 217
258
372
295
295 | 410
385
273
395 | 295
780
1020
350 | 257
418
565
372
348 | 362
376
330
360
400 | 303
341
325
325
321
231 | 271
320
305
790
411 | | ELFV. OF LAND SURFACE DATUM (FT. ABROVE | | 1630.00
1418.00
1260.00
1260.00
1249.00 | 1249.00
1215.00
1260.00 | 1830.00 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1620.00
1635.00
1620.00
1355.00 | 1385.00
1436.00
1340.00
1340.00 | 1420.00
1420.00
1820.00
1820.00 | 1745.00
1840.00
1840.00
1789.00 | | DEPTH
OF
WELL•
TOTAL
(FEET) | | 300
1360
126
126
156 | 155
155
1130
1953 | 337
588
1200
567
1020 | 1020
165
165
349
349 | 755
140
140
1167 | 982
680
1260
1260
2400 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 180
747
747
254
527 | | DATE
OF
SAMPLE | | 82-08-06
83-05-24
82-08-11
83-03-17
53-12-00 | 60-10-19
61-05-03
83-05-20
82-08-10 | 58-03-12
58-03-12
83-05-25
71-09-28
82-08-10 | 83-03-17
82-08-10
83-05-24
82-08-06
83-05-25 | 82-08-05
82-08-04
83-05-24
82-08-12 | A3-05-24
58-03-12
R2-08-11
A3-05-19
A3-05-19 | 82-08-10
83-03-17
82-08-11
83-03-17 | 83-05-19
82-08-09
83-05-20
83-05-25 | | GEO-
LOGIC
UNIT | ADAMS | 122CRRV
122CRRV
122WNPW
122WMPW | 122WNPM
122GDRD
122GDRD | 122C9RV | $\alpha \alpha \alpha \alpha \alpha$ | 122648W
122WVPW
122WVPW
122C96V
122C96V | 122C9PV

122C9PV
122C9RV
122C9RV | 122WNPM
122WNPM
122WNPM
122WNPM | 122CRRV
122CRRV
122CRRV
122WNPM | | NO. | | 010010 | 01 | 00000 | 01 | 01 01 | 010010 | 010 | 01
01 | | LONG-
I-
TUDE | | 118 59 24
118 59 21
118 59 48
118 56 34 | 118 52 41
118 52 26 | 118 59 18
118 50 34
118 43 33
118 35 46
118 35 51 | 19 30 1 | 118 09 26
117 59 22
118 59 44 | 118 52 25
118 53 44
118 55 24
118 56 16 | 118 49 08
118 36 49
118 25 04 | 118 22 27
118 20 58
118 10 29 | | LAT-
I-
TUDE | | 46 54 52
46 59 44
46 59 40
46 58 18 | 46 59 14
46 59 00 | 46 56 16
46 59 59
46 59 59
46 58 50
46 58 50 | 57 0
58 5 | 46 57 12
46 59 33
47 03 56 | 47 03 01
47 02 29
47 00 01
47 00 46 | 47 03 24
47 04 22
47 05 15 | 47 03 59
47 03 36
47 04 02 | | LOCAL
INENT-
I -
FIEP | | 16/3AF-049A1D1
17/31E-03A01
17/31E-07E01
17/31E-08A01 | 17/31E-11901
17/31E-12001 | 17/31E-30C01
17/32E-06R01
17/33E-06D03
17/33E-12F01
17/33E-12F01 | 17/346-23Fn1
17/35F-11H01D2 | 17/375-21601
17/385-02401
18/315-07501D1 | 19/31E-13E01
18/31E-23A01
18/31E-32R01
18/31E-33901 | 18/32F-16C02
18/33F-12C02
18/35E-04901 | 18/35E-11K01
18/35F-12901
18/37E-08J01 | | POTAS-
SIUW.
DIS-
SOLVED
(MG/L
AS K) | | W - W A
2444 | 16 C | 4439 | 17
12
7.4
7.7 | 7.00 M M M M M M M M M M M M M M M M M M | 2.00
2.00
4.40
5.00 | 40.00 F | 14.
14.
14.
14.
15.
15. | 0.0.0.4.4
0.0.0.0.0.0.0.0.0.0.0.0.0.0.0. | |--|-------|---|---------------|--|--|--|--|--|--|--| | SODIUM
AD-
SORP-
TION
RATIO | | | | 3.2 | 0-044
6-6-6-6 | 4
w & 4 0 0 | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 3.3
3.1
7.3
18 | 7.0
10.0
11.0
10.0
10.0 | 4.0
2.0
1.1 | | PFRCENT
SODIUM | | 18
12
12 | 20 20 | 64 | 50
46
63
76
73 | 73
18
24
18 | 66
16
16
82
81 | 440
440
8 | 75
60
36
32
22 | 15
47
52
13
29 | | SODIUM.
DIS-
SOLVED
(MG/L
AS NA) | | ພ ቢ 4 4
4 ር/ 80 ሬ | FE 11 | 1 4 4 L
2 L R O | 46
41
41
52
52 | 32
62
13
13 |
42
16
21
67 | r.r. 4 4 8
r.r. 4 4 8 | 53
27
25
12 | 9.
38.
38.
29. | | MAGNE-
SIUW,
DIS-
SOLVED
(MG/L
AS MG) | | 0
8
8
8
8
8
8 | טר ה:
ה הו | 7.7 | 3.0
3.3
1.9
2.2 | 2.4
32
45
16
11 | 3.3
17
23
1.6 | 4.6.4
6.0
6.0
6.0 | 2.1
4.8
10
11
6.6 | 7.
9.3
93.
16 | | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | | 75
9.2
76 | 22 | 25
11
11 | 18
16
12
8.6
9.0 | 9.5
74
95
31
22 | 42.55
54.55
5.8 | 12
13
16
18 | 6.9
13
21
24
24 | 31
17
14
85
34 | | HARD-
NESS.
NONCAP-
RONATE
(MG/L
CACO3) | ADAMS | 96
128
9 | , n o | 0000 | 00000 | 164
221
0 | 4 0
0 0 | 00000 | 00000 | 22
0
0
141
0 | | HAPD-
NESS
(MG/L
AS
CACO3) | | 344
35
388
241 | 117 | 39
39
39 | 7 88 4 4 9 9 3 3 2 9 4 4 9 3 2 9 4 4 9 3 2 9 9 3 2 9 9 9 9 9 9 9 9 9 9 9 9 9 | 34
317
423
143
100 | 37
175
230
21
23 | 55
62
68
79 | 26
52
94
105 | 108
81
70
348
151 | | COLI-
FORM.
FECAL.
O.7
UM-MF
(COLS./ | | 1117 | ;; ; | 1111 | 11111 | <u> </u> | 11211 | 11111 | 12121 | 21211 | | DATE
OF
SAMPLF | | 82-08-06
83-05-24
82-08-11 | 53-12-00 | 83-05-20
82-08-10
83-05-24 | 58-03-12
58-03-12
83-05-25
71-09-28 | 83-03-17
82-08-10
83-05-24
82-08-06 | 82-08-05
82-08-04
83-05-24
82-08-12
83-05-19 | 83-05-24
58-03-12
82-08-11
83-05-19
83-05-19 | 82-08-10
83-03-17
82-08-11
83-03-17
82-08-09 | 83-05-19
82-09-09
83-05-20
83-05-25
71-10-05 | | LOCAL
JOENT-
I-
FIFR | | 6/3AF-04B01D1
17/31F-03A01
17/31E-07E01 | 17/31E-08¤01 | 17/31E-11 ⁻ 01
17/31E-12 ⁰⁰ 1 | 17/31E-30C01
17/32E-06R01
17/33E-06D03
17/33E-12F01
17/33E-12F02 | 17/34E-23F01
7/35F-11H01D2 | 17/37F-21601
17/38F-02K01
8/31F-07E01D1
'1 | 18/31E-13E01
18/31E-23401
18/31E-32P01
18/31E-33D01 | 18/32E-16C02
18/33E-12C02
19/35E-04901 | 18/35E-11K01
18/35E-12001
18/37E-08J01 | Table 2. -- Continued Table 2.--Continued | NITRO-
GEN*
NOZ+NO3
DIS-
SOLVED
(MG/L | | 6.1
22.10
8.8 | 2.4.1 | 115 | .35
8.1
1.6
1.6 | .30
16
14
<.10 | ,111
,110
,119 | × × × × × × × × × × × × × × × × × × × | 30.0 | |---|-------|--|--|--|--|---|--|--|--| | NITRO-
GEN+
NOZ+VO3
TOTAL
(MG/L
AS N) | | 11111 | 11111 | 11181 | 11111 | ::::: | ::::: | 11111 | 11118 | | NITRO-
SEN•
NITRATE
TOTAL
(MG/L
AS NO3) | | 111100 | 1.3 | 000111 | 11111 | 11111 | 16:111 | 11111 | 11111 | | SOLIDS.
SUM OF
CONSTI-
TUENTS.
DIS-
SOLVED | | 475
244
487
379 | 152
178
269
232
232 | 267
249
222
250
250
234 | 241
467
669
223
179 | 207
229
289
292
273 | 260
236
251
263
367 | 235
246
216
218
149 | 160
225
220
387
266 | | SOLIDS.
RESIDUE
AT 180
DEG. C
DIG. C
NISC | δ | 228 | 180 | 269 247 | 11111 | 11111 | 249 | 11111 | 5 1 1 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | SILICA.
DIS-
SOLVED
(M9/L
AS
SIO2) | ANAMS | 44
63
44
47 | 39
41
59
70 | 34
33
77
66 | 4 4 4 4 4
& \$0 10 \$0 \$0 | 04 W A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 57
30
62
55
110 | 34 t t 66 | መ
የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ | | DATE
OF
SAMPLE | | 82-09-06
83-05-24
82-08-11
83-03-17
53-12-00 | 60-10-19
61-05-03
83-05-20
82-03-10
83-05-24 | 58-03-12
58-03-12
83-05-25
71-09-28
82-08-10 | 83-03-17
82-03-10
93-05-24
82-08-06
93-05-25 | 82-002-004-05-004-05-05-05-05-05-05-05-05-05-05-05-05-05- | 83-05-24
58-03-12
82-09-11
83-05-19 | 82-08-10
83-03-17
82-08-11
83-03-17
82-09-09 | 83-05-19
82-08-09
83-05-20
83-05-25
71-10-05 | | LOCAL
IDENT-
I -
FIER | | 6/38F-0401D1
17/31F-03901
17/31E-07E01
17/31E-08R01 | 17/31F-11001
17/31E-12001 | 17/31E-30C01
17/32E-06P01
17/33E-06D03
17/33E-12F01
17/33E-12F02 | 17/34E-23F91
7/35E-11H01D2 | 17/38E-21601
17/38E-02Kn1
8/31E-07En1n1 | 18/31E-13E01
18/31E-23A01
18/31E-32R01
18/31E-33D01 | 18/32E-16C02
18/33E-12C02
18/35E-04B01 | 18/35E-11K01
18/35E-12001
19/37E-08J01 | | MANGA-
NESE•
DIS-
SOLVED
(UG/L
AS MN) | | ~ÇŢ, | ۱ ۲ | 11~ | 22 | ; ; | | ! ∾ | 2.0 | | ζ- | m 4 | ₹ ₹ | m | 9 | Ωυ ∢ | * 7 | ₽, | • ~ | ¢ 1 | - | ₽. | · ~ ¦ | | |--|-------|--|--------------|----------------------------------|------------------|------------|--------------------------|------------------------------|--------------|--------------|----------------------|------------------------------|--|------------|--------------|------------|------------------|--------------|--------------|----------------------|-----------|----------------|--------------|-------| | MANGA-
NFSE.
TOTAL
PFCOV-
FUBLE
(UG/L
AS MN) | | 1111 | 11 | 111 | ! ! | ; ; | 1 1 | 62° | 11 | ; | :: | 11 | 11 | 1 | 11 | ; | 11 | 1 1 | : | 11 | 1 | 1 1 | 120 | , 1 | | TRON.
DIS-
SOLVED
(UG/L
AS FE) | | 4116 | 3 1 | 110 | ညီ _လ | 1 | 19 | 18 | 86 | , c c | 6,~ | ည် က | 25 | 1,43 | ♥ 1 | ~ | 62 | ů, | ı. Ĉ | re C | 63 | ნ წ | 122 | | | IRON.
TOTAL
RECOV-
EDABLE
(UG/L
AS FE) | | 1111 | 1 1 | 001 | 11 | 110 | | 80 | 1 1 | ; | :: | : : | : : | ł | 110 | 1 | ! ! | ; | ! | ! ! | i | : : | 1 9 | , | | DATE
OF
SAMPLE | ADAWS | 82-08-06
83-05-24
82-08-11 | 3-03-1 | 60-10-19
61-05-03
83-05-20 | 2-08-1
3-05-2 | 8-03-1 | 3-02-5 | 71-09-28
82-08-10 | 3-03- | 3-05- | 82-08-06
83-05-25 | 2-08- | -05-2 | 3-05-1 | 500 | 2-08-1 | 3-05-1
3-05-1 | 2-08-1 | 2-03-1 | 83-03-17
82-08-09 | -65-1 | -08-0 | 83-05-25 | | | LOCAL
IDENT-
I =
FIER | | 16/3AE-04m01D1
17/31E-03M01
17/31E-07E01 | 17/31E-08R01 | 7/31E-1100 | 17/316-12001 | 7/31E-30C0 | //32E-06HU
7/33E-06D0 | 17/33E-12F01
17/33E-12F02 | 17/346_33601 | - | 17/35E-11401D2 | 17/37E-21G01
17/38E-02K01 | ************************************** | 316-016010 | 18/31E-13E01 | 8/31E-32R0 | 19/31E-33001 | 18/32E-16C02 | 18/33E-12002 | 18/35E-04R01 | | 18/35E-11K01 | 18/35E-12001 | ***** | | TEMPER-
ATURE
(DEG C) | | 4 | • • | •
• | ċ | 12.0 | u | 17.2 | ۶. | 8 | ċ | | : | 31.3 | • | ; | 21.0 | • | 12.6 | ; | • | | ċ | 18.9 | ò | œ | 5 | ŝ | 13.5 | : , | : | 20.7 | œ | : | | 17.8 | 17. A | : | : | • | : | |---|-------|-----|--------------|-----------------|---------------|--------------|---------|--------------|--------------|--------------|--------------|--------------|--------------|----------|--------------|--------------|---------|--------------|--------------|---------|----------------|-------|----------------|--------------|--------------|--------------|---------|--------------|----------|--------------|-------------|----------------|--------------|----------|--------------|------|-------|------|------|------|----------| | SH
(STAND-
ARD
UNITS) | | | • | • | • | 7.8 | | | | • | 9.3 | | | 0.6 | • | • | | • | 7.4 | ٠ | • | • | • | 8.0 | • | • | • | • | 80 | • | • | • | • | 7.9 | ٠ | • | | • | | • | 8.1 | | SPF-
CIFIC
COV-
DUCT-
ANCE | | 300 | 000 | 212 | 007 | 409 | 196 | 360 | 350 | 317 | 398 | 310 | 320 | 312 | 992 | 295 | 295 | 694 | 804 | 795 | 273 | 173 | 291 | 488 | 438 | 347 | 326 | 602 | 497 | 353 | 300 | 320 | 287 | 281 | 273 | 279 | 949 | 267 | 274 | 284 | 285 | | ELFV. OF LAND SURFACE DATUM (FT. AROVE | | 7.1 | 00.44.1 | ט•רניס
פיניס | 1430.00 | | 475.0 | 1620.00 | 394.0 | ; | 1700.00 | 9 | 840 | 0 | | 1855.00 | 1855.00 | | 1850.00 | 850.0 | $\overline{}$ | 864.0 | 30.0 | 585 | • | 1440.00 | 0.0 | 432.0 | | 9 (| ,
, | | 744. | 1 | : | : | ; | ; | • | : | : | | DF97H
0F
#ELL+
T07AL
(FEFT) | | ć | 1 A 4 | 17. | 050 | 365 | 61.41 | 017 | 101 | 807 | 5545 | 1725 | 2434 | 2434 | 433 | 1120 | 1120 | 457 | 155 | 155 | 1027 | 9 | ď | 90° | 3 | N. | ~ | C | 400 | ∖ (| v | 1040 | 505 | 205 | 205 | 205 | 502 | 1000 | 505 | 505 | 10°E | | DATE
OF
SAMPLE | | 0 | | 1-00-2 | 2-00-1 | 58-03-12 | 2.00 | 83-05-24 | 0-10-1 | 0-10-0 | 3-62-5 | 3-05-2 | 2-08-1 | 83-05-25 | 0-10-0 | 2-08-1 | 3-0 | ò-1 | RZ-08-09 | 9-0 | 2-0 | 5-5 | 5-5 | 83-05-19 | 3-1 | 9-1 | -03-1 | -10-1 | 61-05-03 | 1-80- | -69- | 3-05 | 9-15 | 60-10-16 | 5- 06 | 2-10 | 40-6 | 3-06 | 3-07 | 3-08 | 63-09-13 | | GEO-
LOGIC
UNIT | ADAus | | 1000 | Vι | v | ų. | 9766 | 1220954 | ' | 2 | 1226780 | - ru | 1226020 | œ | | 122C9RV | N | 121C9RV | 122#NPW | 122WNPM | 1220987 | 22 | 2 | 122Capv | | 122C9RV | 122C9PV | : | 1 | NA CANA | 1
2
3 | 122CARV | ; | ! | : | : | 1 | ; | ; | : | 1 | | SF0
NO. | | 7 | 7 7 | 3 3 | 7 6 | 5 5 | 5 | . . | : 2 | 0 | 01 | 5 | 010 | | 0.1 | 01 | | 01 | 01 | | 02 | | 02 | 02 | 0 | 01 | | 01 | | 10 | | 0.1 | 0 | | | | | | | | | | LONG-
I-
TUDE | | |) (
) (| ກ ເ
ວ ພ | מ
מ
מ | 118 53 30 | 10.0 | 118 47 23 | 18 4.9 2 | 18 44 1 | 18 44 3 | 18 42 2 | 118 41 30 | | 118 43 09 | 18 33 5 | | _ | 9 | 1 | 118 18 18 | | 18 17 2 | 118 57
32 | 18 52 4 | 18 57 4 | | 118 57 56 | | 118 4/ 15 | | 118 47 11 | 8 49 1 | | | | | | | | | | LAT-
TUDE | | ć | 5 6 | # (
- 8 | 0.0 | 47 06 53 | , | 47 10 06 | 0 80 | 07 | 96 5 | 4 | 47 08 49 | | 47 06 56 | 7 07 5 | | 47 07 45 | 10 2 | | 47 07 46 | | 7 07 4 | 47 14 18 | 7 12 0 | 7 11 1 | | 47 10 11 | | 47 13 48 | | 47 13 20 | 11 | | | | | | | | | | LOCAL
IDENT-
I-
FIER | | 1 | 18/3/E-09C0Z | 18734E-29001 | 19/316-14-102 | 19/316-26/01 | 1010040 | 19/325-06402 | 19/32F-16w01 | 19/32F-24K01 | 19/32E-24401 | 19/335-07801 | 19/335-08002 | | 19/335-30001 | 19/34E-20902 | | 19/356-23501 | 19/36E-05901 | | 19/36F-20H0101 | | 19/36F-2100101 | 20/31E-07402 | 20/31E-22v01 | 20/31E-31403 | | 20/31F-31=01 | 1 | 20/32E-15002 | | 20/32F-15L0102 | 20/32E-32901 | | | | | | | | | Table 2.--Continued | POTAS-
SIUM.
DIS-
SOLVED
(MG/L
AS K) | | 000
 | 5.9 | 8.0 | 0 80
0 80 | 9.0 | | ر
د و
و | 5.8 | • | 7.2 | ម | 4 | 6.7 | 6.5 | 2.0 | 0 • <u>•</u> | 6.9 | 8.5 | • | | 3.7 | | • | 5.0 | • | • | • | • | • | 0.0 | |--|-------|--|------------------------------|----------------|--------------|------------------------------|--------------|---------------|--------------|--------------|--------------|--------------|----------|----------------|----------|----------------|--------------|--------------|-----|--------------|--------------|-------------|----------------|--------------|-----|------|------------|----------|----------|------------|----------| | SODIUM
AD-
SORP-
TION
RATIO | | 644 | 5.
1.8 | | 1.5 | 3.8
25 | 9.9 | 15 | | • | 6.2 | | 9.0 | 4.2 | | • | - F | • | | 1.1 | 1.3 | . ~ | 3.9 | 2.1 | 1.2 | 1.1 | 1:1 | 1.1 | 1.1 | 7.7 | 1.2 | | PERCENT | | 18
16
30 | 78
32 | 80 0 | 39 | 70
95 | 83 | 95
90 | 33 | 9 8 | 82 | 96 | 3.
4. | 14 | 2 | 2 5 | | 4 | 34 | 52 | 93 | 21 | 11 | 53 | 36 | 35 | 35 | 35 | ₩.
• | 9 4 | 37 | | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | | 15
8.9 | 30 | 76 | 3.E | R &
9 N | 42 | 69
74 | 7 | 60 | η.
6 | 0.00 | 49 | ů. | r i | | † v | 38 | 7. | 34 | 37 | 19 | n
4 | 36 | 25 | 23 | 23 | 23 | 25 | ф u | 2,0 | | MAGNE-
SIUM.
DIS-
SOLVED
(MG/L
AS MG) | | 15
8.9
24 | 7.3 | 2. | 11 | 3.5 | 1.7 | ຣຸທ | 10 | | 1.5 | 5 5 | 80 | 5.6 | 7.2 | m, | | | 10 | 20 | 7 . | 13 | 3.6 | υ.
α | R. | 8.0 | e. | A.2 | e. | · | * N | | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | | 2 2 3 4 4 8 | 10
40 | 3.9 | | 1.0 | 4 | 2.1 | 18 | 4.0 | 9.4 | 7 E | 61 | 7.3 | 7.3 | r c | 18 | 20 | 52 | 20 | 38 | , Q | 9.6 | 15 | 22 | 25 | 22 | 22 | 21 | 9 6 | 25 | | HAPD-
NESS.
NONCAP-
RONATE
(MG/L
CACO3) | ADAWS | . 5
135 | o m | 00 | | 00 | c | 00 | • | 0 | 0 [| 56 | 30 | 0 | 0 | c • | . | · C | 0 | R7 | 5 6
6 6 | 28 | 0 | c | 0 | • | • | 0 | 0 0 | 9 6 | . 0 | | HARD-
NFSS
(MG/L
AS
CACO3) | | 147 | 130 | ~ < | 100 | œ m
m | 18 | 4 ~ | 86 | 15 | 18 | 261 | 268 | 59 | 53 | 35, | 134 | 4 | 104 | 207 | 153 | 153 | 39 | 61 | 90 | 93 | 6 0 | 89 | 87 | 200 | 89 | | COLI-
FORM,
FFCAL,
O.7
UM-MF
(COLS, | | 111 | 11 | 1 1 | : : | ! ! | ; | 1 1 | ; | : | 1 1 | : : | 7 | : | 1 | ; | ! ! | ; | \$ | ! | ; ; | 7 | 1 | ; | i | ; | : | : | 1 | : : | 1 | | DATE
OF
SAMPLF | | 82-09-09
82-08-10
82-08-14 | 3-05-1 | -05-2 | 0-10-1 | 70-10-03 | 3-(| 82-08-13 | - | ~ | 83-05-19 | 2-08-0 | 3-05-2 | 2-08-0 | 83-05-20 | ν. | : : | 82-08-11 | Ξ. | 7 | 61-05-03 | 7 | 3~05 | w | 0-1 | 5-06 | ៊ុ | 63-04-02 | 63-06-04 | 63-0-10-69 | 63-09-13 | | LOCAL
IDENT-
II-
FIER | | 18/37E-09C02
18/38E-29001
19/31E-14402 | 19/31E-24H01
19/31E-26001 | 19/31E-27601D1 | 19/37E-16401 | 19/32E-24K01
19/32E-24N01 | 19/336-07901 | 19/335-08002 | 19/33E-30C01 | 19/34E-20R02 | 10.256.23601 | 19/36E-05R01 | | 19/36F-20H01D1 | | 19/36F-21C0101 | 20/31F-0/HUZ | 20/316-31403 | | 20/31E-31901 | 20/325-15002 | 20021-32602 | 20/32F-15L01D2 | 20/32E-32901 | | | | | | | | Table 2.--Continued | FLUO-
RIDE.
DIS-
SOLVED
(MG/L:
AS F) | | , v
, v v – v | 6 9 7 6 9 | თოო .
•••••• | | | ₩. • • • • | v
w o rv o 4 | 4 M 4 M W | |---|-------|--|--|--|--|--|--|--|---| | CHLO-
RIDE.
DIS-
SOLVED
(WG/L
AS CL) | | 7.8
3.5
79
25 | 13
14
9.0
6.6 | 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 56
56
52
3.6 | 3.4
4.7
33
10
13 | 11
48
32
17 | 12
5
5
5
6
6
7
8
8 | ນ 4 ນ ⊬ ສ
ທ ພ ທ ໝ ທ | | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | | 10
8.0
110
45
46 | 21
25
14
5•1 | 7.0.0
0.0.0
0.0.0
0.0.0 | 5.5
70
74
10 | 12
11
49
37
35 | 31
65
31
35 | 81
113
115
11 | 11 11 12 11 1 | | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | | 142
93
109
144 | 147 | 144
145
149
136 | 139
235
238
130 | 128
134
134 | 130

118
125 | 128 | 11111 | | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | | 111 521 | 144 | 124 | 195 | ::: = : | 120 | 128
122
121
123 | 121
121
124
121 | | CAR-
BONATE
IT-FLD
(MG/L
AS
CO3) | | 13.00 | 8.0
• 0
• 1 56 | 10
26
15
16 | 25 | •••• | 01100 | 01111 | 11111 | | CAR-
BONATE
FET-FLD
(MG/L
AS CO3) | ADAMS | 1111° | 11001 |
!!!°! | ° | !!!°! | 10011 | 10000 | 00000 | | BICAR-
BONATE
IT-FLD
(MG/L
AS
HCO3) | | 179
116
148
154 | 166
159
 | 162
130
152
140 | 133
295
297
156 | 160
172
176
145 | 151 | 160 | ::::: | | BICAR-
SONATE
FET-FLD
(MG/L
AS
4C03) | | 152 | 176 | 1115 | 538 | 11181 | 146 | 156
149
148
150 | 148
148
151
147
150 | | DATE
OF
SAMPLE | | 82-09-09
82-08-10
82-08-14
83-05-19
58-03-12 | 83-05-23
83-05-24
50-10-19
70-10-03
83-05-26 | 83-05-25
82-08-13
83-05-25
70-10-03
82-08-11 | 83-05-19
59-10-22
82-08-09
83-05-20
82-08-09 | 83-05-20
83-05-26
83-05-19
58-03-12
82-08-11 | 83-03-18
60-10-19
61-05-03
82-08-13
83-03-18 | 83-05-26
59-12-01
60-10-16
62-06-15
62-10-30 | 63-04-02
63-06-04
63-07-03
63-08-27
63-09-13 | | LOCAL
INENT-
I T-
FIER | | 18/37E-09C02
18/38E-29501
19/31E-14402
19/31E-24401
19/31E-26501 | 19/31E-2760101
19/32F-04402
19/32E-16401
19/32E-24K01
19/32E-24K01 | 19/33E-08002
19/33E-30C01
19/34E-20902 | 19/35E-23E01
19/36E-05901
19/36E-20H01D1 | 19/36F-21C01D1
20/31E-07402
20/31E-22N01
20/31E-31A03 | 20/31E-31901
20/32E-15002 | 20/32F-15L01D2
20/3?E-32401 | | Table 2.--Continued | NITRO-
GEN+
NO2+NO3
DIS-
SOLVED
(MG/L | | 2.6 | 5 . 9 | 3.1 | •28 | ; | <.10 | .41 | ; | ; | <.10 | <.10 | <.10 | <.10 | ; | **10 | <.10 | ; | | 7.4 | <.10 | <.10 | <.10 | 7.2 | : - | • | •34 | ; | ; | e i | 25. | •20 | ; | ; | ; | ; | ; | ; | ; | ; | ; | |---|-------|--------------|--------------|--------------|--------------|--------------|----------|----------|--------------|----------|--------------|--------|--------------|----------|--------------|-------------|--------|--------------|--------------|--------|----------------|--------|--------|--------|--------------|-------------|----------|--------------|------------|--------------|--------|----------------|--------------|-----|-----|-----|------|----------|------|----------|------| | NITRO-
GEN•
NOZ+NO3
TOTAL
(MG/L
AS N) | | ; | ! | ; ; | | ; | ! | ; | ! | ; | ; | ; | ; | ; | 1 | ; | ; | ; | ; | : | | NITRO-
GEN•
NITRATE
TOTAL
(MG/L
AS NO3) | | ; | ! | ; | ; | 2.2 | ; | ; | •20 | 00. | ; | ; | ; | ! | 06. | ; | ; | 4.7 | | ; | ; | ; | ; | ; | .30 | | ! | | V. | ; | ł | ; | • 80 | 1.5 | 1.9 | • | 2.2 | , | | 2.1 | 1.8 | | SOLIDS.
SUM OF
CONSTI-
TUENTS.
DIS-
SOLVED
(MG/L) | | 218 | 158 | 451 | 338 | 272 | 291 | 244 | 236 | 236 | 365 | 254 | ; | 267 | 185 | ; | 255 | 433 | 454 | 448 | 217 | 220 | 529 | 320 | 242 | , | 230 | 356 | 215 | 241 | 153 | 240 | 214 | 203 | 198 | 200 | 197 | 180 | 198 | 203 | 208 | | SOLIDS. RESIDUE AT 180 DFG. C AIS- SOLVED (M67L) | s | ; | ; | ; | ; | 568 | ; | ; | 223 | 237 | ; | ; | ; | ! | 190 | ; | ; | 455 | ; ; | ! | ; | ; | ; | ! | 274 | | 1 6 | 340 | 335 | ; | ; | 1. | 214 | 502 | 198 | 202 | 196 | 190 | 198 | 502 | 206 | | SILICA.
DIS-
SOLVED
(MG/L
AS
SIO2) | ADAMS | 44 | 45 | 47 | 63 | 84 | 73 | 46 | 40 | 53 | 110 | 99 | 8 | 80 | 44 | 73 | 67 | 43 | 39 | 39 | 59 | 5.8 | 59 | 54 | 1 F |) | 43 | V V | 0 I | ð. | 4
U | 55 | 55 | 20 | 50 | 51 | ç | , 4
C | 64 | 21 | 52 | | DATE
OF
SAMPLE | | 2-09-0 | 2-08-1 | 2-08-1 | 83-05-19 | 9-03-1 | 83-05-23 | 83-02-54 | 60-10-10 | 70-10-03 | 83-05-26 | 3-02-2 | 2-08-1 | 83-05-25 | 0-10-0 | 2-09-1 | 3-05-1 | 9-10-2 | 82-08-09 | 3-05-2 | 2-08-0 | 3-02-5 | 3-05-5 | 3-05-1 | 58-03-12 | •
•
• | 83-03-18 | 0-10-0 | 0-c0-T | 7-60-2 | 3-03-1 | A3-05-26 | 7 | 7 | 2 | 5-7 | 3-04 | 3-06 | 3-07 | 63-08-27 | 3-09 | | LOCAL
INENT-
FIER | | 18/375-09002 | 18/386-29001 | 19/31E-14H02 | 19/31E-24H01 | 19/315-26001 | (| 6 | 19/32F-16M01 | 6 | 19/32E-24N01 | 9/33F | 19/335-08002 | | 19/33E-30C01 | 9/34E-20 | | 19/356-23601 | 19/36E-05801 | | 19/36E-2040101 | | 7 | ò | 20/31E-22401 | • | | 20/31E-31901 | 1 | 20/32E-1500Z | | 20/32E-15L01D2 | 20/325-32H01 | | | | | | | | | Table 2.--Continued | MANGA-
NESE+
DIS-
SOLVED
(UG/L
AS MN) | | ∽≏α4 | woll- | - œ m | 2 2 ₋₀ | | ∆ 4 æ | -!!!! ! | 1111 | |---|-------|--|--|--|--|--|--|--|--| | MANGA-
NFSE,
TOTAL
PECOV-
EQABLE
(UG/L
AS MN) | | 11111 | 11181 | 11101 | 11111 | ::::: | 11111 | 11111 1 | 1111 | | IRON.
DIS-
SOLVED
(UG/L
AS FE) | | 200 3 3 1 1 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 | 31 31 65 | 111 | 12 43 17 43 | 11 63 14 | 83116 | %1111 1 | 1111 | | IPON.
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | | 3.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1 | 110 | 330 | 12111 | 24°00
11 004
11 001 | 50
610 | 570
50
50
50
50
50 | 30
30
30 | | DATE
OF
SAMPLE | ADAYS | 82-09-09
R2-08-10
82-08-14
83-05-19
58-03-12 | 83-05-24
83-05-24
60-10-19
70-10-03
83-05-26 | 83-05-25
82-08-13
83-05-25
70-10-03 | 83-05-19
59-11-22
82-08-09
83-05-20
82-08-09 | 93-05-20
83-05-26
83-05-19
58-03-12
82-09-11 | 83-03-18
60-10-19
61-05-03
A2-08-13
83-03-18 | 2-100-100-100-100-100-100-100-100-100-10 | 63-06-04
53-07-03
63-09-27
63-09-13 | | LOCAL
IDENT-
I-
FIER | | 18/37E-09C02
18/38E-29b01
19/31E-14H02
19/31E-24H01
19/31E-26h01 | 19/31E-276n1D1
19/32E-04402
19/32E-16M01
19/32E-24K01
19/32E-24K01 | 19/33E-07P01
19/33E-08N02
19/33E-30C01
19/34E-20R02 | 19/35E-23E01
19/36E-05R01
19/36E-20401D1 | 19/36E-21C01D1
20/31E-07H02
20/31E-22V01
20/31E-31A03 | 20/32E-15002 | 20/32E-32R01
20/32E-32R01 | | | | TEMPER- | (DEG C) | | ; | ; | : | : | : | 15.4 | 14.1 | 11.5 | 21.1 | 21.3 | 12,3 | 13.8 | 13.1 | |--------------------------------------|----------------|---------|-------|--------------|--------------|----------|----------|----------|--------------|----------|--------------|--------------|----------|--------------|--------------|----------| | Ŧ, | (STAND-
APD | UNITS) | | 7.8 | 8.1 | 8.1 | 8.0 | 7.9 | 8.0 | 8.0 | 7.8 | 4.6 | 8.2 | 7.6 | ۷.9 | 7.8 | | SPE-
CIFIC
CON- | DUCT-
ANCE | NHUS | | 273 | 272 | 274 | 27.1 | 274 | 298 | 612 | 608 | 285 | 291 | 421 | 308 | 512 | | ELEV.
OF LAND
SURFACE
DATUM | (FT.
AROVE | NGVD) | | ; | ! | : | ; | ; | 1930.00 | 1930.00 | : | 2000.00 | 2000.00 | 1880.00 | 2000.00 | 2000.00 | | DEPT4
OF | WELL,
TOTAL | (FEET) | | 505 | 510 | 510 | 510 | 210 | 340 | 340 | 95 | 1260 | 1260 | 320 | 180 | 190 | | DATE | OF
SAMPLE | | | 65-03-17 | 62-06-15 | 62-07-12 | 62-08-14 | 82-09-05 | 82-08-10 | 83-05-24 | 70-10-03 | 82-09-09 | 93-05-24 | R3-05-25 | 82-08-09 | A3-05-24 | | 650 | LOGIC | | ADAMS | ; | ; | ; | ; | ; | 122WNPM | 122MNPW | 121CARV | 122C4PV | 122CaPV | 122WNPM | 122WNPM | 122WNPM | | | SFO. | | | 10 | 01 | | | | 0.1 | | 01 | 0 | | 16 | 01 | | | | | | | 13 | 12 | | | | 18 | | 26 | 6 | | 22 | 30 | | | l C Z | I-
TUDE | | | 49 13 | 64 | | | | 53 | | | 23 | | 24 | | | | 2 | | | | 118 | 118 | | | | 118 29 18 | | 118 | 118 | | 118 | 118 | | | | | | | 17 | 18 | | | | 14 | | 60 | 19 | | 58 | 56 | | | 4T- | I-
TUDE | | | 11 | = | | | | 47 13 14 | | 13 | 47 12 | | 10 | Ξ | | | | - | | | 47 11 17 | 47 | | | | 47 | | 47 | 47 | | 47 | 47 | | | LOCAL
INENT- | r I - | | | 20/325-32901 | 20/32E-32302 | | | | 20/34E-13401 | | 20/34E-22501 | 20/35F-27A01 | | 20/355-34402 | 20/37E-32001 | | | POTAS-
SIUM.
DIS-
SOLVED
(MG/L
AS K) | | 5.1 | 5.1 | 5.1 | 5.1 | 8 · S | ~ · | • 1 | ָר ני
טייל | • | 1.9 | 1.6 | 1.9 | |--|-------|--------------|--------------|----------|----------|--------------|----------|--------------|---------------|---|--------------|--------------|----------| | SODIUM
AD-
SORP-
TION
RATIO | | 1. | :: | 1,1 | 1:1 | 1.7 | 1.7 | • (| ۲۰۰ | • | ∢. | ∢. | ę. | | PERCENT
SODIUM | | 35 | 35 | 32 | 32 | 37 | 9 . | 7 | 9 4 | 8 | 13 | 13 | 16 | | SODIUM.
DIS-
SOLVED
(MG/L
AS NA) | | 53 | 3.2 | 23 | 23 | 51 | 51 | ۳ <u>۱</u> | n •€ | ? | 12 | 10 | 19 | | MAGNE-
SIUM.
DIS-
SOLVED
(MG/L
AS MG) | | ¢ ¢ | | 8.1 | ٧.٨ | 53 | 5 | , ¢ | 0.4 | • | 18 | 14 | 23 | | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | | 21 | 5 5 | 25 | 22 | 3, | 4 (| ? · | 101 | • | 42 | 32 | 54 | | HARD-
NESS•
NONCAR-
RONATE
(MG/L
CACO3) | ADAWS | 0 | 00 | 0 | 0 | 6 | = ; | 104 | | • | 99 | ~ | 25 | | HARD-
NESS
(MG/L
AS
CACO3) | | 18 | 8 8 | 88 | 84 | 180 | 184 | 167 | • • | } | 179 | 145 | 122 | | COLI-
FORM.
FECAL.
0.7
(M-MF
(COLS./ | | 1 | 1 1 | ! | : | 1 | ! | : | : : | | ; | ; | ۲> | | OATE
OF
SAMPLE | | 65-03-17 | 62-07-12 | 62-08-14 | 20-60-29 | 82-08-10 | 83-05-24 | 50-01-07 | 83-05-24 | | 83-05-25 | 82-08-09 | 83-05-24 | | LOCAL
Inewt-
I-
Fier | | 20/32E-32401 | 2013/E-36402 | | | 20/34E-13901 | | 20/34E-22/01 | TOW/2-3C5/02 | | 20/35E-34402 | 20/37E-32001 | | | FLUO-
RIDE.
DIS-
SOLVED
(MG/L
AS F) | | 40.40.4 | N. W. | | |---|-------|--
--|----------------------------------| | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | | ៷ ͺϙͺ៷ͺ៷
៷៷៷៷៷ | 53
42
7.1 | 26
5.9
27 | | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | | 11
11
9.6
10 | 4 4 4 8
0 80
0 90 | 28
6.0
13 | | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | | 11111 | 171
173
124
132 | 113
143
169 | | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | | 121
122
122
122
122 | 101 | 111 | | CAR-
BONATE
IT-FLD
(MG/L
AS
CO3) | | 11111 | 00100 | •••• | | CAR-
BONATE
FET-FLD
(MG/L
AS CO3) | ADAWS | 0000 | !!°!! | 111 | | GICAR-
BONATE
IT-FLD
(MG/L
AS
HCO3) | | 11111 | 209
234
160
184 | 201
18 2
219 | | AICAD-
BONATE
FET-FLD
(MG/L
AS
HCO3) | | 149
149
149
149 | 130 | 111 | | JATE
OF
SAMPLE | | 65-03-17
62-06-15
62-07-12
62-08-14
62-09-02 | 82-08-10
83-05-24
70-10-03
82-09-09
83-05-24 | 83-05-25
82-08-09
83-05-24 | | LOCAL
INENT-
II-
FIER | | 20/32E-32401
20/32E-32402 | 20/34E-13R01
20/34E-22n01
20/35E-27&01 | 20/35E-34402
20/37E-32001 | Table 2.--Continued | LOCAL |--|---------------------|-----------------|--------|------------------|---|------|--------------|--------------|----------|----------|----------|--------------|----------|--------------|--------------|----------|--------------|--------------|----------| | SOLIDS, SOLIDS, NITRO- DIS- RESIDUE SUM OF NITRO- DIS- AT 180 CONSTI- GEN, SOLVED DEG, C TUENTS, NITPATE OF ("G/L DIS- DIS- TOTAL SAMPLE AS SOLVED SOLVED ("G/L SIOP) (MG/L) (MG/L) AS NO3) ADAMS 65-03-17 45 196 197 1.8 62-06-15 50 199 197 2.0 62-06-14 50 199 197 2.0 62-09-02 50 199 197 2.0 62-09-02 50 199 197 2.0 62-09-02 50 199 197 2.0 62-09-02 50 199 197 2.0 62-09-02 50 199 197 2.0 63-05-24 40 344 83-05-24 40 55 231 83-05-24 45 231 83-05-24 45 280 | NITRO-
GEN• | SON-SON | SOLVES | (MG/L
AS N) | | | ; | ; | ; | ; | : | 6.0 | 5.9 | į | .30 | •28 | 7.2 | 1.9 | 11 | | STLICA RESIDUE SUM OF DIS- DATE OLVED DEG. C TUENTS. OF (MG/L DIS- SAMPLE AS SOLVED SOLVED SID?) (MG/L) (MG/L) ADAMS 65-03-17 45 196 197 62-07-12 50 198 197 62-09-02 50 199 197 62-09-02 50 199 197 62-09-02 50 199 197 62-09-02 50 199 197 62-09-02 50 199 197 62-09-02 50 199 197 62-09-02 50 199 197 62-09-02 50 199 197 62-09-02 50 199 197 63-05-24 40 344 83-05-24 40 289 | NITRO- | 6E V • | TOTAL | (MG/L
AS N) | | | ; | ; | ; | ; | ; | ; | : | ; | ; | ; | : | 1 | ; | | SOLIDS, SOLIDS, DATE DIS— AT IRO DATE SOLVED DEG. C OF (46/L DIS— SAMPLE AS SOLVED SOLVED DEG. C OF (46/L DIS— SAMPLE AS SOLVED SOLVED DEG. C OF (46/L DIS— ADAMS 62-03-17 45 196 62-03-17 45 196 62-03-17 45 196 62-03-17 45 196 62-03-17 45 196 62-03-17 45 196 62-03-17 45 196 62-03-17 45 199 62-03-17 50 199 62-09-02 50 199 62-09-02 50 199 83-05-24 40 83-05-24 40 83-05-24 40 83-05-24 40 83-05-24 40 83-05-24 40 83-05-24 40 83-05-24 40 | NITRO- | DEN. | TOTAL | (46/L
AS NO3) | | | 2.0 | 1.8 | 2.0 | 2.0 | 2.2 | ; | ; | 115 | ; | : | ; | ; | ; | | STLICA+ DATE DATE OIS- OF SOLVED OF (MG/L SAMPLE AS SOLOED AS AS AS AS AS AS AS AS A | SOLIDS,
SUM OF | TUENTS. | -510 | SOLVED
(MG/L) | ı | | 192 | 197 | 198 | 197 | 198 | 344 | 350 | 27.7 | 217 | 231 | 566 | 210 | 289 | | SILI
DATE DIS
OF (46
SAMPLE AS
SOC
65-03-17
62-07-12
62-09-18
62-09-02
62-09-18
62-09-18
62-09-18
62-09-18
62-09-18
62-09-18
63-09-18
63-09-18
63-09-18
63-05-24
70-10-03
83-05-25
83-05-25
83-05-25 | SOL JOS.
RESIDUE | DEG. C | -SIG | SOLVED
(MG/L) | | v | 196 | 198 | 200 | 199 | 199 | ; | ; | 393 | ! | ; | ; | : | ; | | | SILICA | SOLVED | 1/911 | AS
SIO?) | ı | ADAW | 45 | 50 | ů. | 50 | 5.0 | 4.1 | 40 | 36 | 55 | 26 | 33 | 47 | 4
7 | | LOCAL
IDENT—
I—
FIER
20/325-32901
20/345-32901
20/345-22001
20/355-34402
20/355-34402 | | DATE | 90 | SAMPLE | | | 65-03-17 | 62-06-15 | 62-07-12 | 62-08-14 | 20-60-29 | 82-08-10 | 83-05-24 | 70-10-03 | 82-09-09 | 83-05-24 | 83-05-25 | 85-08-09 | 83-05-24 | | | | LOCAL
IDENT- | -1 | FIER | | | 20/325-32801 | 20/325-32302 | | | | 20/34E-13901 | | 20/345-22501 | 20/35F-27A01 | t | 20/35F-34M02 | 20/375-32001 | | | | Table 2Continued | 2Co1 | ntinue | ซ | | |--------------------------------|----------------------|--|--|--|--| | LOCAL
IDENT-
II-
FIER | OATE
OF
SAMPLE | IRON. TOTAL RECOV- ERABLE (UG/L AS FE) | IRON.
DIS-
SOLVED
(UG/L
AS FE) | MANGA-
NFSE •
TOTAL
PECOV-
ERABLE
(UG/L
AS MN) | MANGA-
NESE•
DIS-
SOLVED
(UG/L
AS MN) | | | ADA | Š | | | | | 20/32E-32R01 | 65-03-17 | 0, | ; | <50 | ; | | 20/32E-32R02 | 62-06-15 | 10 | : : | 1 1 | 1 1 | | | 62-08-14 | 10 | ; | 1 | ; | | | 62-09-02 | 40 | : | 1 | ! | | 20/34F-13R01 | 82-09-10 | ; | €, | ; | 11 | | | R3-05-24 | 1 6 | * | 1 (| E | | 20/35F-27A01 | 60-60-28 |)
 -
 | 2 | 0 1 | ۸ | | | 83-05-24 | ; | 17 | 1 | - | | 20/35E-34M02 | 83-05-25 | ; | 15 | ; | 2 | | 20/37E-32001 | 82-08-09 | ; | ę | ! | N | | | 83-05-24 | : | 62 | ! | 7 | Table 2.--Continued | TFMDE2-
ATURE
(DEG C) | | 0.00
0.00
0.00
0.00
0.00 | 4 0 E E E E E E E E E E E E E E E E E E | : 1 | 16.4
11.3 | 13.6 | 113.5 | 14.3 | 11 11 11 11 11 11 11 11 11 11 11 11 11 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 11.0 | |---|---------|---|--|--------------|----------------------------------|--------------------|--|--|--|--|--------------| | CSTAND-
APD
UNITS) | | 0.77
0.00
0.00
0.00
0.00
0.00
0.00
0.00 | 7887
7.00 | • | 4. K | | 8777
8000
8000 | 2
E | 84777
744085 | 7 8 8 7 8
4 7 1 1 0 0 | 8.1 | | SPF-
CIFIC
CON-
DUCT-
ANCE | | 344
377
377
444 | 750
269
369 | 485 | 280
220
220 | 0 | 392
385
510 | 725
499
560
260
255 | 399
520
225
215
1040 | 1760
387
380
372
879 | 252 | | FLEV. OF LAND. SURFACE DATUM (FT. AROVE | | 837.00
670.00
647.00
647.00 | 2160.00 | 605.0 | 080.0 | 2475.00 | 1556.00
2400.00
2400.00 | 2640.00
2640.00
2255.00 | 801.00
801.00
2855.00
2855.00 | 2245.00 | : | | 0F0TH
0F
WFLL•
T0T4L
(FEET) | | 757
82
11
10
10
10
10
10 | 625
625
182 | 500 | 250
474
875 | 515
515 | 191
205
205 | 615
615
10
10 | 159
159
325
325
80 | 265
755
755
100 | - 4 | | DATE
OF
Sample | | 82-07-28
79-07-25
79-07-12
59-10-20
60-05-18 | 79-07-12
82-07-28
83-06-07
70-11-09 | | 71-10-20
82-07-29
83-06-07 | | 71-10-08
82-07-27
83-06-07
79-07-11 | 79-07-11
59-10-29
82-07-29
82-07-28
79-07-11 | 71-05-25
79-07-11
82-07-29
83-06-07 | 71-10-08
72-06-14
72-06-14
72-09-26
61-05-02 | 1-05-0 | | 6F0-
L06IC
UNIT | DOUGLAS | 12260RD
1126LCV
1126LCV
110ALVM | 110ALVM
122GDRD
122GDRD | ; | 1126LCV
12260RD
12260RD | 122C9RV
122C9RV | 122WNPW
122WNPW
1126LCV | 1126LCV
1226DRO
1226DRD
1226DRD
1226DRD | 1126LCV
1126LCV
12260RD
12260RD | 11111 | 1 | | SEQ. | | 0011 | 60 60 | . 10 | 00 | 0 | 66 6 | 00 00 | 01 | 00 00 | 5 | | LONS-
I-
TUDE | | 120 00 49
120 09 48
120 19 09
120 19 13 | 120 19 00
119 49 41
119 52 24 | 19 44 3 | 20 05 0 | 19 44 4 | 119 43 07
119 35 52
120 12 25 | 120 13 18
120 04 23
119 42 55
120 09 28 | 120 12 48
120 01 32
119 25 52 | 119 38 08
119 30 39
119 21 44 | 19 41 | | LAT-
1-
TUDE | | 47 19 46
47 22 28
47 29 38
47 26 16 | 47 26 09
47 30 15
47 26 49 | 7 26 4 | 7 32 4 7 34 3 | 7 34 4 | 47 32 12
47 36 30
47 39 44 | 47 37 35
47 39 04
47 38 42
47 46 00 | 47 43 48
47 42 59
47 44 36 | 47 49 01
47 48 55
47 50 37 | 4 | | I.ncal
Inent-
I-
Fier | | 21/72F-1260101
22/21F-26901
23/20F-10901
23/20F-34 ^D 01 | 23/20E-35N01
23/24E-09E01
23/24E-31E02 | 23/25E-31402 | 24/21E-13403 | 24/25E-18E01 | 24/24E-32C01
24/26E-06401
25/21E-16K01 | 25/21E-32402
25/22F-21H01D1
25/25F-20701
24/21E-11H02 | 24/21F-21N02
24/27E-25N01
24/27E-17P01 | 27/25E-25C01
27/25E-25D06
27/27E-13A01 | 30/256-28401 | Table 2.--Continued | LOCAL
Inent-
I-
FIFP | DATE
OF
SAMPLE | COLI-
FORM.
FECAL.
OM-WF
(COLS./ | HARD-
NFSS
(MG/L
AS
CACO3) | HARD-
NESS.
NONCAR-
RONATF
(MG/L
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNF-
SIUM.
DIS-
SOLVED
(MG/L
AS MG) | SONTUM.
DTS-
SOLVED
(MG/L
AS NA) | PERCENT | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM.
DIS-
SOLVĘD
(MG/L
AS K) | |-------------------------------|----------------------|--
--|--|--|--|--|------------|---|---| | | | | | NOUGLAS | | | | | | | | 1/225-1260101 | A2-01-28 | ; | 35 | c | 0.6 | 3.1 | 4 | 11 | 4.8 | 4.0 | | 22/21E-26901 | 79-07-25 | 7 7 | 175 | 6 | 25 | =! | 19 | 19 | هٔ ه | 4 · | | 71/20E-10401 | 59-10-50 | ; | 061 | . | c o | <u> </u> | | ער | e u | 4 M | | | 60-05-18 | • | 199 | 16 | 28 | 13 | <u>.</u> 9 | 15 | , rů | 3.1 | | 23/20E-35401 | 79-07-12 | ; | 228 | 0 | 65 | 16 | | 18 | ٠. | 4.1 | | 23/24E-09E01 | 82-01-28 | 1 | 60 i | 0 | 21 | ur.
ec | | 8 | œ. | <u>د</u>
د | | | 83-06-07 | ₹ ' | 70 | 0 0 | 5 2 | 9.7 | | 53 | o ç (| 01 | | 3/24F-36C01S | 78-05-23 | ! ; | 122 | 12 | 31
29 | 12 | 7 0 | \$ 2 | o co | v 4 | | 23/25E-31402 | 78-07-06 | ; | 182 | 22 | 4 3 | 3.8 | 25 | 23 | æ | \$.5 | | 24/20F-35J01 | 71-10-20 | 1 | 211 | 1٤ | 61 | 4 | 46 | 28 | 1.2 | 4.0 | | 24/215-13403 | A2-01-29 | ; | 6 | 0 | 19 | 11 | 7.8 | 15 | 4. | 1.7 | | 24/25E-18£01 | 83-06-07 | ⊽ (| 95
186 | 105 | 20
43 | 11 | 17.8 | 15
16 | 4.0 | 7.0 | | | | • | | | , | : : | . (| ; ; | , | | | 24/255_32501 | 71-10-08 | ∵ ! | 274 | 183 | 62
8 | <u>۾</u> ج | 20 | 15 | ٠.
- | ر
د د | | 24/26F-06401 | 82-01-27 | : : | 174 | 4 | ս 4
Մու | | 2 0 | 13 | 1 4 | 0 P | | | R3-06-07 | 7 | 167 | 52 | 45 | 15 | 2 | 13 | 4 | 60 | | 25/21E-16K01 | 79-07-11 | • | 267 | 37 | 85 | 15 | e
r. | • | ~ | 2.3 | | 25/21E-32×02 | 79-07-11 | ₽ | 300 | 30 | 44 | 55 | | 11 | r. | 3.8 | | 5/22F-21H01D1 | 59-10-29 | : : | 210 | 4 t | 4 n
40 c | <u>6</u> | | 19 | ٠. ٩ | 1.0 | | 25/25F-20301 | 80-01-08 | ; | 87 | Ċ | e c | σ
α | | | | . 4 | | 26/218-11-02 | 79-07-11 | : | 110 | 19 | 35 | 7.2 | 7.4 | 0 | ~ | 1.9 | | 26/21E-21402 | 71-05-25 | ; | 170 | 64 | 48 | 12 | 12 | 13 | ₹. | 3.6 | | | 79-07-11 | ! | 248 | 108 | 42 | 14 | 74 | 11 | ₹. | 4.2 | | 26/22E-25401 | R7-07-29 | • | 95 | 0 | 52 | 7.8 | 7.8 | 15 | 4. | 1.1 | | | 83-05-07 | ۲ | 76 | 0 [| 500 | α ; | e. 6 | 16 | 4.1 | ٠.٠ | | 24/27E-17901 | 82-01-28 | ; | 456 | 2A7 | E 6 | η.
4 | 35 | 13 | ٠. | e. | | 27/256-25001 | 71-10-08 | ; | 91B | 551 | 170 | 110 | 43 | 0 | ٠, | 6.0 | | 27/246-25006 | 72-06-14 | : | 154 | ~ | 35 | 18 | ç | 21 | ۲. | 4.9 | | | 72-06-14 | ; | 152 | - | 31 | 1.8 | 0 | 25 | ۲. | 5.0 | | | 12-49-56 | ! | 143 | 0 | 31 | 16 | 25 | * 2 | œ. | 4.6 | | 27/275-13401 | 61-05-02 | : | 336 | 133 | 72 | 38 | 42 | 28 | 1.5 | 12 | | 30/25F-2840] | 20-50-19 | 1 | 124 | 14 | 34 | 9.5 | 3.7 | • | • | 1.1 | Table 2.--Continued | FLUO-
RIDF.
DIS-
SOLVED
(MG/L
AS F) | C 4 M N N | m + m m + | ម | ም ላ ላ ላ ላ | , | n ammer a | |---|---|---|--|--|--|--| | C4L0-
RIDE.
DIS-
SOLVED
(WG/L
AS CL) | လ န မ က် လ
ယ က က ထ လ
ယ | 14
4.3
4.3
11 | 20
4 - 5
1 - 1
42 - 1 | 74
9.6
18
21
3.4 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 1100
111
9.1
32
3.2 | | SULFATE
DIS-
SOLVED
(M9/L
AS SO4) | | 23
15
31 | 32 32 | 11 W L L V | 7.5
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0 | 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | 0.7.
 | 95 | : : : : : : : : : : : : : : : : : : : | 91 | 1173 | 11111 1 | | ALKA-
LINITV
FIFLD
(MG/L
AS
CACO3) | 180
210
163
192 | 230
1152
110 | 150 | 163 | 970
167
191
191 | 328
152
151
145
203 | | CAR-
BONATE
IT-FLD
(MG/L
AS
CO3) | 2 : : : : | 10011 | !!000 | 01001 | ? ? ? ? | :::::: | | CAR-
BONATE
FET-FLO
(MA/L
AS CO3) | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0 0 | 00 | 10110 | 00 0 00 | 110000 | | RICAR-
BONATE
IT-FLD
(MG/L
AS
HCO3) | 153 | 128 | 136
141
94 | 123
139
139 | 124
124
124
124
127 | : ::::::::::::::::::::::::::::::::::::: | | RICAR-
RONATE
FFT-FLD
(MG/L
AS | 220
256
199 | 290
1195
140 | 200 | 199 | 329
204
204
1111
1111
1711 | 400
151
184
177
267 | | NATE
OF
SAMPLF | 92-07-29
79-07-25
79-07-25
59-10-20
60-05-18 | 79-07-12
82-07-28
83-06-07
70-11-09
78-05-23 | 79-07-06
71-10-20
82-07-29
83-06-07 | A3-06-07
71-10-08
82-07-27
A3-06-07 | 79-07-11
59-10-29
82-07-29
79-07-11
71-05-25
79-07-11
82-07-29
82-07-29 | 71-10-08
72-06-14
72-06-14
77-09-76
61-05-02 | | LOCAL
INENT-
I I-
FIER | 21/22F-126n1D1
27/21E-26901
23/2nF-10901
23/2nF-34901 | 23/24E-09E01
23/24E-09E01
23/24E-31E02
23/24E-36C01S | 23/25F-31402
24/20F-35J01
24/21F-13403
24/25E-18E01 | 24/25E-32C01
24/25E-06H01
25/21E-16K01 | 25/21F-32Kn2
25/22F-21Hn101
25/25F-20001
26/21F-11H02
26/22F-25W01 | 27/25F-25C01
27/26F-25006
27/27F-13A01
30/25F-28H01 | Table 2.--Continued | 60 | DATE
OF
SAMPLE | |--|----------------------| | 265 | | | 235 227 16
270 256 18
 | α | | 235 222 16 270 256 18 272 237 252 16 272 238 6.2 273 238 6.2 274 6.8 275 252 238 276 277 2.0 277 2.0 278 289 18 278 289 18 289 289 18 289 289 18 280 284 284 285 280 284 285 285 280 284 285 285 280 284 285 285 280 286 286 286 286 286 286 286 286 286 286 | ī. | | 235 222 16 270 256 18 271 256 18 272 273 262 273 293 6.2 274 6.2 275 275 2.5 488 4.26 276 277 2.6 277 2.6 278 279 18 278 279 18 278 279 18 278 279 18 278 279 18 278 279 18 278 279 18 278 279 18 278 279 18 278 279 18 278 279 18 278 279 279 18 278 279 279 18 278 279 279 279 279 279 279 279 279 279 279 | ~ | | 232 238 6.2 | 59-10-20 | | 232 238 6.2 | ^ | | 232 238 6.2 | œ | | 232 238 6.2 4.0 301 292 2.5 488 426 2.07 | , | | 222 215 4.0 301 292 2.5 488 426 077 162 1347 289 18 12 262 234 237 189 18 12 1150 1136 12 286 265 266 266 266 266 266 266 266 266 26 | 70-11-09 | | 301 292 2.5
468 426 077
162 1347
268 272 1.5
27 1.5
289 18 1.5
339 299 18 1.5
383 18 1.5
181 181 181 181 185
150 1136 1136 187
250 256 256 256 256 256 256 256 256 256 256 | C | | 468 426 107 162 13 268 272 105 280 105 347 105 347 105 193 105 193 115 159 115 | <u>v</u> | | 250 152 134 135 133 134 134 134 134 134 134 134 134 134 134 135 136
136 | 0 | | 250 162 13 268 272 18 268 272 18 272 18 272 18 272 18 273 299 18 273 299 18 262 234 19 262 234 19 262 234 18 262 234 18 263 264 264 264 268 266 266 266 268 266 266 266 268 267 268 26 | <u>o</u> . 1 | | 268 272 1.5
289 272 1.5
280 229
339 299 18 1
193 193 1
193 193 1
1150 1136 1
262 234 3.7
262 234 15
1150 1136 15
266 266 15
276 266 266 17
276 250 255 17 | 83-06-07 | | 268 272 1.5
272 1.5
272 1.5
300 1.5
339 299 18 1.5
334 1.93
1.93 1.5
1.60 1.5
1.60 1.5
1.50 1.5
262 234 3.7
1.50 1.5
265 2.56 1.5
266 2.66 1.5
270 250 250 1.5
270 250 250 1.5
270 250 250 1.5 | . | | 262 234 3.7 1.5 2.9 1.5 2.9 - | 7 | | 259 | α. <u>t</u> | | 262 234 3.7 15.9 18.1 1 | - 1 | | 339 299 18 343 5 334 134 | 79-07-11 | | 262 234 3.7 160 17 186 | - | | 262 234 17
262 234 1
341 15
150 17
1150 1136 17
286 286 17
250 252 17 | 6 | | 262 234 141 3.7 1
262 234 3.7 150 150 160 - | 0 | | 262 234 3.7 341 3.7 159 1626 17 128 17 - | 82-07-28
79-07-11 | | 1150 1136 17
286 286 17
280 286 17
250 252 17 | | | 1150 1136 17
286 266
17
280 246 17
250 252 17 |) <u>-</u> | | 1150 1136 17
286 266 17
280 246 4.4
250 252 1.7 | | | 1150 1136 17
286 266 17
280 246 4.4
250 252 1.7 | . ~ | | 1150 1136 17
286 266 4.4
280 246 3.8
250 252 1.7 | 12-07-28 | | 286 266 4.4
280 246 3.8
250 252 1.7 | -0A | | 280 246 3.8
250 252 1.7 | 4 | | 250 252 1.7 | 72-06-14 | | | 92-60- | | | 61-05-02 | | 15 152 149 6,3 | | | MANGA-
NESE+
DIS-
SOLVEN
(UG/L
AS MN) | | 4 | ! | ₽ | : | ! | 7 | • ~ | n • | J | : : | | ; | : | 4 | - | 4 | ; | \$ | ; ; | = (| ю. | 1> | Ţ | • | 35 | æ | ₽ | 1 | ţ | 27 | 5 | α | ; | ; | ; | ; | : | ; | |---|--------|----------------|----------|------------|------------|----------|---|------------|------------|-----|---------------|---|--------|------------|-----------|--------|--------------|---|----------|--------------|---------|--------|--------------|---------|----------------|--------|-------|--------|--------------|------|--------------|------|--------------|------------|--|-------------|--------|--------------|--------------| | WANGA-
NFSE,
TOTAL
PFCOV-
FPABLF
(UG/L
AS MN) | | ! | ! | : | ; | ; | ; | 1 | 1 | , | <10 | | <10 | 120 | ; | ; | ! | | 1 9 | D2.> | ; | ; | ł | ; | ; | ! | ; | ! | 6 50 | : ! | ; | ! | ! | 0 Z > | | 620 | : ; | ; | 1 | | IRON.
DIS-
SOLVED
(UG/L
AS FE) | | 35 | ; | <10 | ; | ; | • | 7 | , | 07 | ! ! | | ! | ! | 2 | 14 | ç | | r | ; ; | 17 | 21 | <10 | 012 | : 1 | ស | 8. | <10 | ; | <10 | ¢ | 19 | * | ; | ; | ; | ; | : | : | | IPON•
TOTAL
RECOV—
ERABLE
(1167L
AS FF) | AS. | ! | ; | ; | 20 | 10 | ļ | ' ! | | 1 4 | <10 | | 180 | 066 | ; | ; | : | | ! 6 | 330 | ! | ; | ! | ; | 1600 | ! | ; | ! | 0.0 | : ; | ; | ; | ; | S. | | ·N | 100 | <10 | 10 | | DATF
OF
SAMPLE | NOUGLA | 2-07 | 9-07 | 70-6 | 9-10 | 60-04-18 | 0-07-1 | | | | 78-05-23 | • | 07 | 1-10-5 | 2-10-2 | 3-06-0 | 2-01-2 | | A3-06-07 | 1-10-0 | 2-0 | 3-04-0 | 9-07-1 | 9-07-1 | , _ | 2-11-2 | N | 9-07-1 | 1-05 | 2-01 | -07 | 3-06 | 2-0 | 0-01-1 | ֚֚֚֚֚֚֚֡֝֝֝֓֜֝֝֝֝֝֝֝֜֝֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֡֓֓ | 7-06-1 | 7-00-0 | , . | 61-05-02 | | LOCAL
IDENT-
I -
FIE9 | | 21/22E-1260101 | 2/21E-2 | 3/20F-10P0 | 3/20E-34R0 | | 01120-30076 | | 3/245-0950 | 1 | 23/24E-34C01S | | 3/255- | 4/20E-35J0 | 721E-13A0 | | 24/25E-18E01 | | | 24/25E-32C01 | 4/26E-0 | | 25/21E-14K01 | 5/21F_7 | 25/225-2140101 | | 25E-2 | 6/21 | 26/21F=21M02 | | 26/22E-25N01 | | 26/27E-17P01 | 7/255-2500 | 27/245-25004 | 17605-63110 | | 27/27E-13A01 | 30/25F-29H01 | Table 2.--Continued | LOCAL
TOENT-
T-
FIFR | LAT-
J-
TURE | L 0N3-
T-
TUNE | SED. | GFO-
LOGIC
UNIT | DATE
OF
SAMPLE | DFDTH
OF
WFLL•
TOTAL
(FFFT) | ELFV. OF LAND SUBFACE DATUM (FT. ARNVE | SPF-
CIFIC
CON-
DUCT-
ANCF
UMHOS | DH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
(DEG C) | |-------------------------------|----------------------|------------------------|-------------|-----------------------|----------------------------------|---|--|---|--------------------------------|-----------------------------| | | | | | FRANKLIN | • | | | | | | | 9/29E-02502
9/29F-23,J02 | 46 14 48 | 119 09 37
119 08 29 | 100 | 12257LM | 83-05-18 | 473
60 | 470.00
385.00 | 445
489 | 4.0 | 22.i
18.0 | | 19/29E=23001 | 46 14 38 | 119 09 12 | 0 1 0 2 0 2 | ::: | 61-05-04
42-04-28
61-05-04 | 0 W 4 | 365.00 | 428
326
461 | 7.9 | 18.0
15.0 | | 9/30E-02401 | 17 1 | • 00 6 | | 1225BLM | A2-08-27 | 211 | 515.00 | 575 | 8 | 17.6 | | 0/305-18401 | 5 | o. | | 1225nL# | 70-03-09 | 2115
FF01 | 515.00 | 575
505 | 8 . 8 | 16.2 | | 9/305-20001 | 46 15 13 | 119 05 40 | 01 | 11 | 60-10-17 | 1
0
0
0
0
0 | 410.00 | 594 | 7.9 | 18.0 | | 19/30E-27K01
19/31E-04N01 | 46 13 55
46 17 05 | 119 02 29
118 57 00 | 0010 | 11 | 60-10-17
42-04-28 | 121
343 |
658.00 | 084
480 | 4.9 | 19.0 | | 0/24E-12F01
0/29E-10001 | 46 22 08
46 22 19 | 119 15 09
119 10 23 | 55 | 112RGLn | 60-10-17
83-03-10
53-12-00 | 343
196
618 | 495.00 | 464
415
409 | 8.1
7.9 | 16.6 | | 0/305-03001 | 46 22 49 | 119 02 13 | 0.1 | 1225nLM | 42-08-27 | 230 | 640.00 | 064 | 60 I | 17.8 | | 10056-30670 | ď | 6 | 4 | 12257LM | A3-03-11 | 730 | 540.00 | 24.7
7.4.7
7.4.7 | 7.7 | 15.7 | | 0/31E-32L02 | 46 19 15 | 118 57 50 | | 12250LM
12250LM | A2-08-30
A3-03-09 | 350
350 | 540.00 | 415 | 6.6 | 19.6 | | n/32F-23J01 | 46 20 00 | 118 45 59 | 01 | 122WNPW | A2-08-30 | 300 | 550.00 | 260 | 8.0 | 23.0 | | 11/286-36-01 | 46 23 18 | 119 14 19 | 01 | 122#NDW
12257LM | A3-03-08
R2-08-30 | 300
746 | 550.00
845.00 | 250
435 | 7.7 | 22.0 | | 11/29F-03A01 | 46 28 26 | 119 09 15 | 01 | 12257LM
18250LM | R3-03-09
R3-05-23 | 746
552 | 845.00 | 430
296 | 7.9 | 24.1 | | 11/30F-02P01 | 46 27 47 | 119 00 40 | 5 5 | 112GLCV | 83-03-10 | 124 | 292.00 | 555
843 | 7.8 | 14.5 | | 1/30E-12501 | 12 9 | 00 00 | 01 | 122YKIM | A2-08-30 | 410 | 625.00 | 7.85 | C (| 17.7 | | 11/30F-36401 | 46 23 36 | 119 00 24 | 01 | 1227KIM
1225nLM | 83-03-09
83-05-17 | 237 | 720.00 | 430
830 | 7 00 | 16.3 | | 11/316-04001 | 46 27 37 | 118 56 25 | 01 | 122CARV | R2-08-30 | 1310 | 850.00 | 375 | 8.2 | 71.4 | | 10405-3057 | 4 | 0.4 | 5 | 122C9RV | 83-05-18 | 1310 | 850.00 | 380 | 8 r | 21.1 | | 117377-50401
12729F-12401 | 46 32 43 | 119 1 | 01 | | 42-04-27
60-10-17 | 450 | 616.00 | 4
6
6
7
6
7
6
7
7 | 8.2 | 10.01 | | 2/28F-23H01D1 | 46 31 00 | 119 15 35 | 10 | 1225nLW | 82-08-30 | 413 | 390.00 | 395 | 8 9 | 18.5 | | 728F-24F01S | 30 | 119 15 | 0.1 | 172551 M | 83-03-09
58-03-16 | n | 340.00 | 1130 | 7.9 | 15.5 | | 12/24F-24N01 | 46 30 23 | 119 15 29 | 10 | ; | 70-09-15 | 755 | ; | 468 | 8.7 | 19.0 | | P/29F-28F01 | 5 | 119 11 | 0 | ; | 53-01-00 | 609 | ; | 285 | D • 6 | 20.0 | Table 2.--Continued | POTAS-
SIUM.
DIS-
SOLVED
(MG/L
AS K) | | 12
6.4 | | 4.4 | 11,0 | E. | 15.7 | - m | • | === | 6.6 | 0 0 | | • | 11, | 6.9 | 4.6
6.4 | 16 | 2.1 | · | 1.5 | • | \$ | • | 6.3 | |---|----------|---|----------------------------------|--------------|------------------------------|------------|------------------------------|--------------|--------------|--------------|--------------|----------------------|--------------|--------------|----------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----------------|---------------|------------------------------| | SODIUM
AD-
SORP-
TION
RATIO | | 6 0 | . • • | 6.0 | . 0.
1.1 | 1.0 | 2.00 | . E | 1.5 | | • | :: | 1.
E. | 0.6 | 3.0 | 6 | น์
เก | . m | 9. | • | | 4.00 | 6.6 |)
 | 3.2 | | PERCENT | | # * * * * * * * * * * * * * * * * * * * | 12 | 23 | 25 27 | * 2 | 30 | 38 | 37 | 25
22 | 53 | 20 00 | 4 4 | 28 | 58 | 21 | 0 Y | 58 | 12 | 53 | 2 0 | 75
80 | 89 | 24 | 88
99 | | SONTUM.
DIS-
SOLVED
(MG/L
AS NA) | | 0 60 | 2 2 4 | 1.6 | 25. | <u>س</u> | 3.4
1.6
1.6 | r m | ec
60 | ž
Ž | 35 | 0 f | ** | , o | 40
40 | 60 | ₹ 6 | . e | χ | 9 ! |) F | | 2,0 | າຜ | 46 | | MAGNE-
SIUW.
DIS-
SOLVED
(MG/L
AS MG) | | 4° C | 1113 | ₩.
• | . 4. | 139 | 124 | • | ± | 36
36 | 23 | 66 | • | | 7.8 | 25 | 39
8 | 8 | 57 | 6.9 | , R. | 1.9 | 3.7 | , e | 4.6 | | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | | 5.2 | 40
38
61 | 44 | 6.14 | 28 | 22.5 | 58 | 62 | 4 4
W 4 | 29 | 5 5
5 | 17 | 50 | 20 | 53 | 9 6 | 33 | 9 | 81. | 51 | 7.5 | 15 | 110 | 9.4 | | HARD-
NESS.
NONCAP-
RONCAFC
(MG/L
CACO3) | FRANKLIN | C 4 | 00 8
78 0 00 | 50 | i o Ei | E | 200 |) C | C | 59
70 | 96 | ~ c | cc | · e | . . | | \$ 12 | | 190 | c | 2 M | 00 | 00 | 300 | 00 | | HARD-
NFSS
(MG/L
AS
CACO3) | | 189 | 153
140
210 | 712 | 175 | 219 | 163 | 128 | m | 252
258 | 242 | 13A
13A | 11 | 8 . | 8
6
9 | 223 | 386 | 119 | 385 | 73 | 200 | 41 | 53 | 4 22
5 24 | 12 | | COLI-
FORM.
FFCAL.
UM-MF
(COLS./ | | :: | 111 | 17 | ; | ! | 111 | : | ; | 12 | د1 | 12 | 15 | ; ; | 71 | ; | : : | ⊽ | : | ; | : : | 1 1 | 17 | 7 1 | 11 | | DATE
OF
SAMPLE | | 83-05-18 | 61-05-04
42-04-28
61-05-04 | 82-08-27 | 70-08-28 | 40-10-17 | 60-10-17
42-04-29 | A3-03-10 | 53-12-00 | 83-03-11 | 83-03-10 | 83-03-09
83-03-09 | 82-08-30 | AP-08-30 | 83-03-09
83-05-23 | R3-03-10 | 70-12-14 | 83-03-09 | 83-05-17 | 6 | | 42-04-27 | 82-08-30 | 54-03-16 | 70-09-15 | | LOCAL
IOFNI-
I-
FIFR | | 09/29F-02502
09/29E-23J02 | 09/29E-23501 | 09/30E-02P01 | 09/30E-18401
09/30E-20501 | | 09/30E-27K01
09/31E-04v01 | 10/24E-12F01 | 10/29E-10001 | 10/30F-03901 | 10/30F-35-01 | 10/31E-32L02 | 10/32F-23J01 | 11/246-36901 | 11/29E-03A01 | 11/30E-02P01 | 11/30E-11C01 | 111345-11301 | 11/305-36401 | 11/315-04001 | 11/326-20401 | 12/28E-12401 | 12/28F-23H01D1 | 12/28F-24F01S | 12/28F-24V01
12/29F-28F01 | Table 2.--Continued | FLUO-
RIDE.
DIS-
SOLVED
(MG/L
AS F) | '።
. የ. ፋ ፌ ቀ |
 |
စီစီ တက်ဆီ | က်က်ခံနှင့် | 9 r & 6 r | | 2000 | 4 H | |---|--|--|--
--|---|--|--|---| | CHLO-
RIDE.
DIS-
SOLVEN
(4G/L
AS CL) | 26
11
16
16 | 2
2
2
2
3
3
4
3
4
3
4
3
4
3
4
3
4
3
4
3 | 22
20
20
40
40
50 | 98
98
98
96
96 | 7.2
7.0
19
19
6.4 | 53 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 8.0
111
9.5 | 13
23
11 | | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | 4 K : M W | 76
75
36
46 | ጉል ጉል ተ
የ ራ ና ፲ ይ | 646
646
646
646
646
646
646
646
646
646 | 2 2 2 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 | 10 4 6 6 7 4 6 6 7 6 9 6 9 6 9 6 9 6 9 9 9 9 9 9 9 9 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 35 9 35 | | ALKA-
LINTTY
LAR
(MG/L
AS
CACO3) | 1 1 1 1 1 | 167 | 132 | 193
176
171
145 | 130
196
202
114 | 187
158
165
195 | 131 | 159 | | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | 195
133
156
182 | 244
162
166 | 148 | 11111 | 11111 | 172 | 198
161
157 | 152 | | CAR-
RONATE
IT-FLN
(MG/L
AS
CO3) | 91111 | 00111 | 11191 | 00000 | 00000 | 01000 | 00111 | ••!!! | | CAR-
BONATE
FEI-FLD
(MG/L
AS CO3)
FRANKLIN | 10000 | 11000 | 0 & 0 0 | ::::: | 11111 | c | 11000 | 11000 | | RICAR-
RONATE
IT-FLD
(MG/L
AS
HG03) | 262 | 206 212 | 111 11 | 227
251
192
167 | 1119
239
339
339 | 761
198
198
248 | 169 | 193 | | RICAR-
RONATE
FFT-FLD
(MG/L
AS
HC03) | 162 | 277
197
202 | 180
158
172 | 11111 | 11111 | 210 | 241
192
192 | 185
170
116 | | DATE
OF
SAMPLE | 83-05-18
60-10-17
61-05-04
42-04-28
61-05-04 | 82-08-27
83-03-08
70-08-28
60-05-23 | 60-10-17
42-04-28
60-10-17
83-03-10
53-12-00 | 82-08-27
83-03-11
83-03-10
87-08-30
83-03-09 | 89-08-30
89-08-30
89-08-30
83-08-09
83-08-09 | 83-03-10
82-03-30
83-03-09 | 82-08-30
83-05-18
59-03-13
42-04-27
60-10-17 | 82-08-30
83-03-09
58-03-16
70-09-15
53-01-00 | | LOCAL
Infint-
I-
FIER | 09/29F-02502
09/29F-23J02
09/29E-23P01
09/29E-23P02 | 09/30E-02R01
09/30E-18H01
09/30E-20901 | 09/31E-04ND1
09/31E-04ND1
10/28E-12F01
10/29E-10D01 | 10/30E-03001
10/30E-35R01
10/31E-32L02 | 10/32E-23J01
11/28E-36901
11/29E-03A01 | 11/30E-02-01
11/30E-11C01
11/30E-12D01
11/30E-36w01 | 11/31E~04P01
11/32E~20A01
12/28F-12H01 | 2/2AF-23H01D1
2/2AF-24F01S
17/2AE-24F01
12/29F-28F01 | Table 2.--Continued | MITRO-GEN-
GEN-
NOZ+NO3
DIS-
DIS-
MG/L
AS N) | | <.10 | ; | ŀ | : : | 4.0 | 6. 3 | : : | ; | ; | ; | 1100 | : | 9.2 | 6.3 | 13 | 9.1 | 1.6 | .87 | . 93 | 01.0 | <.10 | 0.4 | : ; | | 8.1 | 3.4 | *. " | ; | :: | 7 | <.10 | ; | :: | |---|----------|----------|--------------|----------|--------------|--------------|-------------|--------------|-------------|--------------|--|--------------|--------------|--------------|-----|--------------|---------|-----|--------------|--------------|------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|----------------|----------|---------------|------------------------------| | NITRO-
GEN• NC
NO2+NO3
TOTAL
(MG/L
AS N) | | ; | : | ; | : : | : | ; | ; ; | : | ; | ; | ; ; | ; | ; | : | : | ; | : | 1 | : | ; ; | : | ; | ; | : 1 | : | ł | : | ; | : : | ; | ; | : | : : | | NTTRO-
GFN•
UITPATF
TOTAL
MG/L
AS NO3) | | ; | 13 | | 11 | 1 | | 00. | ; * | 12 | •10 | 930 | • 00 | ; | ; | : | ; | ł | ; | : | ; ; | i | ; | 33 | : 1 | : : | ; | ! | 04. | .20 | ; | ł | 5.3 | 0.4 | | SOLIDS.
SUM OF
CONSTI-
TUENTS.
DIS-
SOLVED
(MG/L) | | 328 | 962 | 265 | 295 | 352 | 353 | 500
600 | 317 | 302 | 349 | 284 | 298 | 405 | 414 | 374 | 287 | 285 | 211 | 209 | 311 | 414 | 372 | 513 | 160 | 491 | 287 | 291 | 322 | 325
325 | 278 | 284 | 760 | 328
230 | | SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (WG/L) | לר זא | : | 308 | 276 | 308 | ; | 1 6 | 80.6 | 366 | 324 | 336 | 9 1 | ; | ; | ; | ; | ; | : | : | • | : : | ; | : | 627 | ; ; | : | : | ! | 331 | 321 | ; | ! | 196 | 329 | | SILICA.
DIS-
SOLVED
(MG/L'
AS
SIO?) | FRANKLIN | 29 | 33 | 25 | 33 | 41 | 4 (| t c | 80 | 39 | 50 | 0. 4
0. € | : | ñ. | 57 | 4 | 80 i | 59 | 69 | 0 0 | د <i>د</i> | 215 | 41 | 4 (| ج
د د | 3.0 | e
S | 4 | 37 | 53 | 8 | 62 | 32 | 56
1 | | DATE
OF
SAMPLF | | 83-05-18 | 60-10-17 | 61-05-04 | 61-05-04 | 2-0 A | m (| 5 6 | 60-10-17 | [-0 | ֚֚֚֚֚֚֚֝֞֞֜֝֞֟֝֟֝֟֜֜֝֓֓֓֓֓֓֓֜֜֟֜֜֓֓֓֓֡֜֜֜֝֡֓֡֓֡֡֝֜֜֡֡֓֡֡֡֡֡֡ | A3-03-10 | | r. | • | 83-03-10 | n, | " | 82-08-30 | 3-0 | 00-60-66 | 3.0 | 83-03-10 | 70-12-14 | 05-00-20 | 83-05-17 | 82-08-30 | 83-02-1A | 58-03-13 | 60-10-17 | 82-08-30 | 83-03-09 | 58-03-16 | 70-09-15
53-01-00 | | LOCAL
IDENT-
I F | | | 09/295-23/02 | | 09/29E-23P02 | 09/30E-02R01 | | 09/30E-18H01 | 27.305-2004 | 09/30E-27K01 | 09/31E-04N01 | 0/28E | 10/295-10001 | 10/305-03001 | | 10/30E-35R01 | 0/31E-3 | | 10/326-23J01 | 110070 70011 | 1/685-3971 | 11/296-03401 | 11/30E-02R01 | 11/30E-11C01 | 11/305-12001 | 11/30F-36401 | 11/31E-04P01 | | 11/325-20401 | 16/68E-16H01 | 12/28E-23H01D1 | | 12/28E-24F01S | 12/28E-74N01
12/29F-28F01 | Table 2.--Continued | MANGA-
NESE.
NIS-
SOLVED
(UG/L
AS WN) | | 23 | ! ! | ; | ; | | → ¦ | : : | : | ; | : | ! 6 | 6° ; | | ۲- | ۰ ۸ | | ∵ ∵ | ? | ŗ | 53 | ; c c | ٦ | 1; | . 4 | m | 2 | ~ | ; | : : | į | 23.0 | : | ; | ; | |---|----------|--------------|------------|------------|--------------|--------------|------------|--------------|----------|------------|--------------|--------|--------------|-----------|--------------|------------|--------------|--------|--------------|--------|--------------|--------------|------------|--------------|------------|--------------|--------------|------|--------------|------------|---|----------------|---------|--------------|---------| | MANGA-
NFSE.
TOTAL
PFCOV-
EDABLE
(UG/L
AS MN) | | ſ | : : | ł | ! | : | ! (| 0 1 | : | ; | ; | : | ; ; | | ; | 1 1 | ; | ; | ; | ! | : : | : | ; | 420 | : : | ; | ; | ! | 1 | : : | | ; ; | ; | 100 | ; | | IRON.
DIS-
SOLVED
(UG/L
AS FE) | | 73 | : : | ; | ; | φ: | = | : : | ! | ; | 1 | 1 7 | # ! | | ır c | יו ל | 9 | ^ | æ | 7 | 120 | 10 | m | ! | e a | 14 | ¢ | 16 | ! | !! | | የ | : 1 | ; | i | | IPON* TOTAL RECOV- EPABLE (UG/L AS FE) | V[] N | 1 3 | 0۲.
10. | 40 | <10 | ; | ! \$ | • • | 90 | 300 | 40 | 20 | : : | | 1 | ! ! | 1 | ; | ; | ; | 1 1 | ; | 1 | 20 | ! ! | • • | ; | ! | 250 | 880
880 | | : : | 04 | 5.0 | • | | DATF
OF -
SAMPLE | FRANKLIN | -05-1 | O 10 | -04-5 | -0-40- | ~ (| 3-03-0 | 2-80-0 | 60-10-17 | 0-10-1 | 2-04-2 | 0-10-1 | A3-03-10 | | 82-09-27 | 3-(13-1 | 2-08-3 | 3-03-0 | 2-0A | 3-03-0 | 92-09-30 | 3-05-2 | 3-03-1 | 0-12-1 | 2-0K-5 | 83-05-17 | 2-0A | 3-05 | A-03 | 42-04-27 | | 82-04-30 | A-03-1 | 0-00-1 | 3-01-0 | | LOCAL
IDENT-
I-
FIED | | 09/29E-02602 | 9/296-2 | 9/29E-23P0 | 09/29E-23P02 | 09/305-02001 | | 09/30E-1RH01 | 97.30E-7 | 9/30E-27K0 | 09/31E-04N01 | | 10/28E-12F01 | 7.5.7.7.0 | 10/305-03001 | 0036-30670 | 10/305-35401 | 77.7 | 10/325-23301 | | 11/285-36801 | 11/295-03401 | 1/30E-02P0 | 11/30E-11C01 | 1/30E-1 | 11/30E-36M01 | 11/315-04001 | , | 11/325-20401 | 2/28E-12H0 | | 12/28E-2340101 | 128E-24 | 12/28E-24N01 | 2/296-2 | Table 2.--Continued | TFWPE3-
Ature
(DFG C) | | ; | 1 9 | 12.3 | 17.71 | 17.1 | σ | } | 27.6
8.10 | 6.00 | 8.05 | 20.0 | 15.6 | 16.1 | 15.3 | 20.4 | 20.0 | 11.0 | 14.0 | 18.3 | 18.2 | 1 6 | 7 4 | 17.2 | 13.5 | 18.8 | 13.8 | 15.5 | } | 1 | ; | 20.5 | 21.5 | ; | | • | 23.5 | ; ; | 22.3 | | |---|----------|--------------|------------|----------------|----------|---------|--------------|--------------|------------------|------|--------------|---------|--------------|--------------|---------|--------------|----------|--------------|--------------|--------------|---------|--------------|----------------|---|--------------|--------------|----------|--------------|----------|----------|-------------|----------|----------|----------|-----|----------|----------|----------|------------|--| | HC
(STAND TR
MAD (UNITS) | | • | • | S 60 | • | | • | • | \$ 4
60
60 | ٠ | • | ٠ | • | ۰ ۱
۵ ۵ | ٠ | • | 7.6 | ٠ | • | • | • | • | • | ec
ec | • | ٠ | 7.8 | • | • | 8.2 | 7.7 | 8.1 | 8.1 | 8.0 | | ٠ | ٠ | • | , e. | | | SPF CIFIC CON DUCT ANCE LMHOS | | 310 | 343
010 | 370 | 745 | 735 | 556 | 388 | 386
375 | 7 | 320 | 341 | 4 | 925 | 423 | 560 | 525 | 325 | 355 | 420 | 471 | 310 |
 | 191 | 151 | 560 | 557 | 373 | 378 | 377 | 378 | 386 | 385 | 398 | • | 378 | 114 | | 403
403 | | | EIFV. OF IAND SURFACE DATUM (FT. ARNVE | | 914.00 | | 970.00 | 914.40 | 914.40 | • | 52.0 | 952,50 | | 995.00 | ٥٠,٥ | | 890.00 | | _ | 860.00 | _ | • | _ | 785.0 | ٠, ه | 705 | 785.00 | ; | 1100.00 | 1100.00 | 1275.00 | ; | 1 | ; | 1 | ; | 1275.00 | | ! | | • | : : | | | 0F2TH
0F
WELL.
TOTAL
(FFET) | | 669 | 609 | 45.8 | 458 | 458 | 192 | 1119 | 1119 | 1111 | ß | S | 4 | 235 | ₹, | 1325 | 1325 | 537 | 220 | 300 | 300 | 652 | 700 | 340 | 117 | 305 | 305 | A63 | 463 | R63 | 8 63 | R63 | 863 | R63 |
• (| 863 | F. G. G. | 843 | 863 | | | NATE
OF
SAMPLE | 7 | 56-11-95 | 56-12-27 | 83-03-11 | R2-09-01 | -03-1 | -03-1 | -10-0 | 70-11-10 | 1 | 2-0 | 3-0 | <u>-</u> -1 | 82-09-01 |)
1 | R2-08-31 | 83-03-10 | 58-03-13 | 11-01-04 | A2-08-31 | 3-05 | 90 | 000 | J (C) | 41-09-01 | A2-08-31 | A3-03-15 | 52-03-50 | 53-04-23 | 53-10-28 | 54-08-18 | 62-60-55 | 56-09-13 | 57-11-08 | ; | 82-90-09 | 61-01-04 | 61-10-05 | 64-04-59 | | | GFO-
LOGIC
UNIT | FRANKLIN | ; | | 12257LM | 122YKIM | 122YKIM | : | 122WNPM | 122WVPM | E | 12257LM | 12257LW | 121CARV | 12250KM | M705221 | 12261RN | 1226290 | į | 1 | NGNM22I | 122WNPM | 122WNPM | NOG JOCK | 122C3RV | ; | 12250LM | 1225nLM | 1210997 | 1210997 | 2 | 2 | 121C9RV | 2 | \simeq | - : | ≌ : | | 7.5 | 1210427 | | | SF0. | | 01 | ; | 7 0 | ; | | <u>ء</u> | 0
1 | | | 01 | , | 6 | [| | 0.1 | • | 10 | 70 | 10 | | <u>-</u> | 5 | • | 01 | 01 | , | 2 | | | | | | | | | | | | | | 10NS-
1-
TUDE | | 119 11 06 | | 119 09 33 | • | | 19 49 4 | 119 15 36 | | | 119 12 07 | | 119 09 25 | 19 05 4 | | 118 52 24 | , | 118 51 32 | 4 | 4 | | 118 51 14 | 118 43 46 |) | 118 32 43 | 11 | • | 119 10 41 | | | | | | | | | | | | | | LAT-
TUDE | | 46 29 55 | | 46 29 24 | , | | 6 30 | 46 36 27 | | | 46 37 46 | | 46 35 23 | 33 | | 46 38 35 | | 46 35 29 | 38 | 4 33 4 4 | | 46 37 49 | 46 38 28 | | 33 | 6 44] | | 46 43 21 | | | | | | | | | | | | | | LOCAL
INENT-
I-
FJE9 | | 12/295-28501 | | 12/245-3480101 | | | 12/32E-28901 | 13/2AE-13401 | | | 13/29F-08H01 | | 13/29E-26901 | 13/306-31401 | | 13/31E-01501 | | 13/31F-24-01 | 14/32E-01J01 | 13/32F-03C01 | | 13/326-07502 | 10.0M30-3cc/cr | 101000000000000000000000000000000000000 | 13/345-33901 | 14/295-05401 | | 14/295-09401 | | | | | | | | | | | | | Table 2. -- Continued | FLUO-
RTDE •
OTS-
SOLVED
(MG/L
AS F) | * ·· | | W W W | | | .m.
www.re | 1.00 | 00000 | 10000 | |---|-----------------|----------------------------------|--|--|--|--|--|--|---| | CHLO-
RIDE.
DIS-
SOLVED
(WG/L
AS CL) | 12 | 25.25 | 18
8 4
1 4 4 1 | 100
100
100
100
100
100
100
100
100
100 | 189
189
189
189
189 | 11
9.2
10
7.8 | 35 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 112 | 1100111 | | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | 4 n | 30
40
120 | 0 4 C C C C | 11
13
150
150 | 66-14
96-14 | 40 H 4 F | 74564
74566 | \$ 7 4 K 8 | 40 V 4 E | | ALKA-
LINTTY
LAB
(MG/L
AS
CACO3) | ; ; | 157 | 157 | 140
167
241
255 | 206 226 | 169
113
131
131 | 149 | 11111 | 11111 | | ALKA-
LINITY
FIELD
(MS/L
AS
CACO3) | o^ vr
oc. or | 128 | 103
145
149 | ======================================= | 138 | 11111 | 39
149
152 | 154
154
153
153 | 153
152
153
155 | | CAR-
BONATE
IT-FLD
(MG/L
AS
CO3) | ; ; | 919 | 12 11 21 | 00100 | 00110 | . 0
. 0
10
13 | 10011 | ::::: | 11111 | | CAR-
RONATE
FET-FLO
(MG/L
AS CO3) | FRANKLIN
0 | 101 | 10101 | ° | •• | ::::: | e!!ee | 0000 | 00000 | | BICAR-
RONATE
IT-FLD
(MG/L
AS
HCO3) | ; ; | 704 | 215

157 | 177
225
280
317 | 278
276
1188 | 209
153
155
167 | 190 | 11111 | 11111 | | RICAR-
BONATE
FET-FLD
(MG/L
AS
HCO3) | 108 | 136 | 125
177
192 | 135 | 1 1 8 4 1 | !!!!! | 72

192
185 | 198
196
196
197 | 197
195
196
189 | | DATE
OF
SAMPLE | 0 0 | 83-03-11
56-03-06
82-09-01 | 83-03-10
58-03-13
54-10-00
70-11-10
83-03-14 | 82-09-01
83-03-10
54-12-10
82-09-01
83-03-10 | 82-08-31
83-03-10
58-03-13
60-10-17
82-08-31 | 83-05-18
82-08-31
83-03-10
82-09-02
83-03-10 | 61-09-01
82-08-31
83-03-15
52-03-20
53-04-23 | 53-10-28
54-08-18
55-09-29
56-09-13
57-11-08 | 60-10-19
60-110-19
61-10-05
62-11-09
64-04-29 | | LOCAL
TOENT-
T T F
FJFR | 12/296-28F01 | 12/29F-34R01D1
12/30E-05901 | 12/32E-28901
13/29F-13N01 | 13/29E-26401
13/29E-26401
13/30E-31V01 | 13/31E-01E01
13/31E-24#01
13/32E-01J01
13/32F-03C01 | 13/32E-07E02
13/33F-06M01D1 | 13/34F-33901
14/29E-05A01
14/29E-09A01 | | | Table 2.--Continued | POTAS-
SIUM.
DIS-
SOLVED
(MG/L
AS K) | | 9.0 | 13 | 3.9
5.1 | 5.1 | • | 7: | 16 | 6.8 | 7.1 | ហ | * * | 7.3 | 6.7 | 6.4 | 4 i | Մ | 5.8 | 4 | ٠. ٥ | , ¢ | 1.9 | 5.9 | 91 | · · | 7.8 | 6.9 | 7.6 | 7.5 | t | 7.8 | ٠.
د ه | 7.6 | S. E. | |--|----------|--------------|----------------|----------------------|----------|--------------|--------------|----------------|--------------|----------|--------------|--------------|--------------|----------|--------------|--------------|--------------|-----|--------------|-------------------|----------------|--------------|--------------|-----|--------------|------|------|------|------------|----------|----------|------------|------------|----------| | SODIUM
AD-
SORP-
TION
RATIO | | | 6.5 | សំ សំ | ທູ | 1.7 | 16 | 8 61 | 1.9 | 1.9 | æ (| 1.2 | æ. | .7 | 1.2 | | 2.1 | 2.1 | æ (| | 6.0 | ທີ | 1.0 | 1.0 | , o | 2.1 | 1.9 | 2.1 | 2.1 | 1.5 | 2. | | 2.1 | 2.0 | | DERCENT
SONTUM | | 99 | 2 62 | 16 | 12 | 50 | 86 | 87 | 84 | 46 | 22 | 33 | 19 | 19 | 34 | 35 | * | 94 | 52 | 2 ; | 80 | 22 | 24 | 23 | # !
ñ ! | 64 | 94 | 49 | 6 4
6 4 | r
* | 6 4 | 0 0 | 64 | 4 | | SONTUM.
DIS-
SOLVED
(MG/L
AS NA) | | 2 4 | 5 5 | 15
22 | 7 | 60 | 18 | 8 2 | 38 | 0 \$ | 4 (| ን ር | 25 | 7 | 77 | 72 | 4 | 52 | c | e (| 7 7 6 | 7.8 | 35 | 4 (| 4 4 | 4 | 43 | 44 | 4 4 | ç | ž. | 5 4
4 4 | . 4 | ** | | WAGNE-
SIUM.
DIS-
SOLVED
(MG/L
AS-MG) | | | | 21
39 | | • | ٠. | ŧ m | 8.2 | 4.0 | 25 | 39 | 22 | 23 | 12 | 0 : | = | | 15 | N | 2.5 | 3.8 | 0 | | 12 | 11 | 12 | 6.6 | 0.5 | 7 | Ξ: | | 10 | 11 | | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | | 0.6 | 8.4 | 31
72 | 99 | 12 | 1.6 | , w | 19 | 25 | 32 | 6 8
8 8 | 53 | 52 | 25 | 32 | S | 88 | 52 | 27 | 14° 6 | ~ | 38 | 4. | 20 | 19 | 21 | 20 | 2 5 | 13 | 9 : | 1 6 | 20 | 25 | | HAPD-
NESS+
NONCAR-
RONATE
(MG/L
CACO3) | FRANKLIN | co | • | 36
191 | 164 | 0 | 0 | 00 | 0 | 0 | 67 | 105 | 17 | 0 | 0 | 0 | 0 | c | C | 0 0 | | c | 7.0 | 77 | . o | • | 0 | c | 00 | > | 0 0 | > c | 0 | • | | HARD-
NFSS
(MG/L
AS
CACO3) | | 4 4 | 52 | 164
341 | 321 | 55 | . | t M | £ | 94 | 178 | 360 | 223 | 216 | 104 | 121 | 103 | 123 | 112 | 117 | 33 | 58 | 219 | 238 | 6 6 | 93 | 102 | 16 | 91 | 701 | 6 6 | 70
0 6 | 91 | 100 | | COLI-
FORM.
FECAL
0.7
UM-4F
(COLS./ | | 1 1 | 1 | 11 | ₹ | : | : | ! ⊽ | 1 | ⊽ | 1 | l 7 | 1 | ₽ | 1 | : | : | 1 | ; | [' | 1 1 | : | : | 7 | : : | ; | ! | 1 | 1 1 | ł | : | : : | ! | 1 | | NATE
OF
SAMPLF | | 56-11-02 | 83-03-11 | 56-03-06
82-09-01 | 83-03-10 | 58-03-13 | 54-10-00 | R3-03-14 | 82-09-01 | 83-03-10 | 54-12-10 | 83-03-10 | A2-08-31 | 83-03-10 | 54-03-13 | 60-10-17 | 42-0H-31 | | | | 83-03-10 | 1-0 | 2 | 5 | 53-04-23 | 3-10 | 4-08 | 5-09 | 56-00-13 | 90±11=16 | 60-06-28 | 50-01-19 | 62-10-09 | 62-90-99 | | LOCAL
JOENT-
I -
FIER | | 12/295-28501 | 12/29F-34R0101 | 12/30E-05R01 | | 12/37E-28901 | 13/29F-13401 | | 13/29E-08401 | • | 13/295-26901 | 13/302-31401 | 13/31F-01E01 | | 13/316-24801 | 13/32F-01J01 | 13/375-03001 | | 13/326-07602 | 10 cm / 0 cm / cm | 13/33/-03/0101 | 13/345-33401 | 14/295-05401 | | 14/245-09401 | | | | | | | | | | Table 2.--Continued | | | | | | • | | | , | | | ė | | | | | . 1 | , | | | 'n | 4 | | | | | | | | | | | | | , | | | |---|----------|--------------|----------------|--------------|--------------|--------------|------------|---|--------------|----------|--------------|--------------|--------|--------------|----------------------|--------------|--------------|---|----------|--------------|-------------------|------|--------------|--------------|----------|--------------|-----|----------|----------|----------|----------|----------|----------|----------|----------|------------| | NITRO-
GEN+
NOZ+NO3
DIS-
SOLVED
(MG/L
AS N) | | • • | 4.10 | 8.5 | 7 • • | i | | • | <.10 | | 1 | 9 | } | 0,0 | 2.2 | 1 | 6,0 | | 2,5 | | ָּהָ
קי | <.10 | ; | 4.0 | 4.1 | ; | i | : | i | : | i | • | ٠ | i | i | 11 | | NITRO-
GEN.
NOZ+NO3
TOTAL
(MG/L
AS N) | | : 1 | 1 | :: | ; ; | 1 | : : | | • | 1 | : | : : | | • | : 1 | } ; | ; ; | | ; | 1 | ; ; | ; | ; | ; | • | • | 1 | ; | ; | 1 | ; | : | ; | ; | • | !! | | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS NO3) | | 1.2 | 1 1 | 12 | 1 2 | 20 | e ! | | ! | | 14 | ; ; | | 1 | • | | : | | : | 1 | ; ; | : | .60 | ; | 11 | . 70 | •50 | 1.0 | .50 | 06. | . 80 | 2.0 | .60 | 1.9 | .80 | 1.8 | | SOLIDS.
SUM OF
CONSTI-
TUENTS.
DIS.
SOLVED | | 1 1 | 285 | 278 | 5 0 C | 336 | 288 | | 245 | 276 | 340 | 574 | | 350 | 342 | 613 | 276 | j | 306 | 215 | מוט
נשל | 283 | 107 | 365 | 382 | 592 | ! | 273 | 270 | 264 | 692 | 569 | 566 | 270 | 270 | 269
290 | | SOLIDS. RESIDUE AT 180 DFG. C DIS. SOLVED (MG/L) | FRANKLIN | 236 | 1 | ;; | 21.5 | ; ; | 282 | | • | ! | ; | : : | | 1 | 1 [| 112 | 100 | | : | } | ; ; | ; | 113 | 1 | 1 3 | 566 | 263 | 264 | 271 | 266 | 263 | 27.1 | 261 | 282 | 264 | 270
280 | |
SILICA.
DIS-
SOLVED
(MG/L
AS
SID2) | FRAN | ; ; | 51 | 57 | , , | : | 4.4
6.6 | 3 | 49 | ç, | ; | 4
2
3 |) | 4 1 | t, 4 | 4 c | יים מי | 3 | 6 9 | 4 | գ բ
ը Ծ | 7 | | | 50 | | | 62 | 5
5 | 22 | ሌ
ማ | 49 | 80 | ,
5 | ٦. | 7.
7. | | DATE
OF
SAMPLE | | 56-11-02 | 83-03-11 | 55-03-06 | 58-03-13 | 54-10-00 | 70-11-10 | | 2-0 | 83-03-10 | 54-12-10 | 83-03-10 |)
} | 82-08-31 | 60-03-10
60-03-13 | 50-03-13 | 82-08-33 | | 83-05-18 | | יו
מית | 3-0 | | | 83-03-15 | | | 53-10-28 | 54-04-18 | 55-00-50 | 55-09-13 | 57-11-0A | 60-06-2R | 60-10-19 | 61-10-05 | 62-10-09 | | LOCAL
IDENT-
I-
FIER | | 12/295-29Fn] | 12/29F-34401D1 | 12/30E-05R01 | • | 13/28F-13V01 | | | 13/295-08401 | | 13/295-26801 | 13/30F-31/01 | | 13/316-01601 | ביים יהייון | 13/315-04/01 | 13/32F-01301 | 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 13/32E-0/E0Z | 13/335=0640101 | | 13/345-33901 | 14/295-05401 | | 14/295-09401 | | | | | | | | | | | Table 2.--Continued | MANGA-
NESE.
NIS-
SOLVED
(UG/L
AS WN) | | ; | ļ·- | - ; | ហ | ~ | : | : | ! " | c | 51 | 7 | ; ' | ` ; | , | n: 1 | 2 | : : | ; ; | 7 | ₽ | ⊽ | ∾ 6 | 0[> | ; | ; | ∾ . | - • { | } | : | ; | : | ; | : | ; | ; | : | ; | : | ; | |---|----------|--------------|----------|----------------|----------|----------|--------------|---------|----------|----|--------------|----------|--------------|--------------|---|--------------|----------|--------------|-------------|-----------|----------|--------------|----------|----------------|-----|--------------|--------------|------------------|--------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|------------|----------| | MANGA-
NESE,
TOTAL
PFCOV-
FPABLF
(UG/L
AS MN) | | : | : | : : | ; | ; | ; | 1 3 | v2> | ! | : | : | ; | : : | | ; ; | : 1 | ; ; |) ! | ; | ; | ; | ; | : : | ı | ; | ; | : : | , | : | ! | ; | ! | : | : | ; | ; | ; | 450 | <50 | | JRON.
DIS-
SOLVED
(UG/L
AS FE) | | 170 | ; • | • ! | • | ç | ; | ; | 1 0 | £ | 32 | 9 | ! | 4 ≪ | • | φ (| E | • • | ; ; | Ç | Ç | 4 | 0 | 3,4 | • | ; | m (| T : | 1 | : | ; | ; | ! | ; | 210 | ; | ! | ; | ; | ; | | IPON.
TOTAL
RECOV-
FRABLE
(UG/L
AS FE) | נרוא | : | : 1 | | ; ; | : | 30 | 1 : | 0 | ; | ; | ; | ! | : : | | : : | 1000 | 1000 | 2 (| ! | ; | ! | : | : : | | 04 | : | ! 6 | 3 - | 9 | 20 | 0 4 | داه | ¢10 | i | 150 | 20 | 0, | 90 | • | | DATE
OF
SAMPLE | FRANKLIN | 56-11-02 | 56-12-27 | 56-69-66 | 82-00-01 | 83-03-10 | | ∢ ' | 70-11-10 | ٠, | 2-00-2 | 3-03-1 | 4-12-1 | A3-03-01 | | 82-08-31 | 3-03-1 | 110010 | 7 - 0 0 - 0 | 2-60-2 | A3-05-18 | 82-08-31 | 93-03-10 | 83-03-10 | 200 | 61-09-01 | | 67-60-63 | , , | 62-40-66 | 53-10-58 | 54-08-18 | 55-00-56 | 56-00-13 | 57-11-08 | 60-04-28 | 60-10-19 | 61-10-05 | 65-10-09 | 64-04-59 | | LOCAL
Inent-
In-
FIER | | 12/296-28F01 | ò | 12/245/3440101 | , | | 12/32E-28801 | 3/29E-1 | | | 13/296-09H01 | | 13/296-26801 | 13/30E-31NO1 | | 13/31E-01E01 | 0/216-0 | 13/325-01:01 | 3/30E-0 | 3/ 3/4 -0 | | 13/326-07602 | | 13/33E-04M0101 | | 13/346-33801 | 14/295-05401 | 16/20F_00401 | 10160-1630-1 | | | | | | | | | | | | Table 2.--Continued | TFWPE2_
ATURE
(DEG C) | | 22.3 | 21.1 | : 1 | : | 1 | 1 | 22.7 | 0.07 | 1 | 13.5 | ! | 19.4 | 16.5 | 14.9 | 18.9 | 11.5 | : | ; | 17.7 | 17.Î | 1 | 15.5 | ; | 15.5 | 25.0 | ; | 18.5 | 18.6 | 16.3 | 29.1 | 28.3 | |---|----------|--------------|------------|----------|----------|----------|----------|--------------|----------|--------------|----------|----------|--------------|----------|----------|--------------|----------|----------|---------------|--------------|----------|--------------|--------------|----------|----------|--------------|--------------|----------|----------------|----------|--------------|----------| | SH
(STAND-
ARD
UNITS) | | 4.0 | 9.1 | 7.9 | 4.9 | 8.0 | 7.9 | 7.8 | 9.2 | ! | 7.9 | 1 | 8.5 | 7.7 | 7.5 | 7.9 | 7.7 | : | 7.5 | 8.0 | 7.6 | 8.1 | • | 7.5 | 8.0 | 8.8 | 7.8 | 7.9 | 7.7 | 7.7 | 7.5 | 7.4 | | SPF-
CIFIC
COV-
DUCT-
ANCF
µMHOS | | 395 | 389 | 388 | 404 | 410 | 412 | 660 | φ.
 | * | 1570 | 266 | 396 | 375 | 370 | 503 | 735 | 544 | 587 | 440 | 440 | : | 337 | 1 | 308 | 352 | 1 | 311 | 935 | 820 | 790 | 790 | | ELFV. OF 1 AND SURFACE DATUM (FT. ARNVE | | 1 8 | i ! | 1 | 1 | ! | ! | 1085.00 | 1085.00 | ! | 953.00 | ! | 1016.00 | 1016.00 | 1014.00 | 1 | ; | ! | 1 | 1115.00 | 1115.00 | 904.00 | 904.00 | 904.00 | : | ; | 874.00 | : | 1000.00 | 1000.00 | 1340.00 | 1340.00 | | DFPT4
OF
WFLL•
TOTAL
(FEET) | | 863 | 363 | 863 | 863 | 863 | 863 | 420 | 0 2 4 | 371 | 371 | • | 433 | 433 | 433 | 717 | 717 | 717 | 341 | 320 | 320 | 643 | 286 | 286 | 586 | 1105 | 505 | 505 | 220 | 220 | 046 | 940 | | DATE
OF
Sample | | 65-01-26 | 67-02-13 | 67-03-15 | 67-04-26 | 68-03-04 | 69-06-12 | R2-08-31 | 83-03-10 | 00-80-25 | 58-03-13 | 65-06-19 | 52-07-00 | R2-08-31 | 83-03-14 | 52-01-00 | 58-03-13 | 62-06-20 | 53-11-00 | A2-09-02 | A3-03-11 | 55-06-30 | 42-04-58 | 55-06-30 | 58-03-13 | 70-09-24 | 55-06-30 | 60-10-17 | R2-09-02 | A3-05-20 | 82-09-01 | 83-05-20 | | 6F0-
L06IC
UNIT | FRANKLIN | 121CAPV | | 121C4RV | 121CARV | 121CRRV | 121C4RV | 12250LM | 12250LM | 121CPRV | 1210997 | 1210981 | 122WNPM | 122WNPW | 122WNPM | 121099 | 121CRRV | 121CHRV | 1 | 1227KIM | 122Y#14 | 121CARV | ; | ; | ; | ; | 1 | : | 122WNPM | 122WNP4 | 122CARV | 122C9RV | | SEQ. | | 0.1 | | | | | | 10 | 7 | ī | | | 0.1 | | | 0 | | | 01 | 01 | | 20 | 5 | | | 0 1 | 20 | | 0 | | 01 | | | LONG-
I-
Tude | | 119 10 41 | | | | | | 119 13 31 | į | 119 04 38 | | | 119 02 27 | | | 119 04 09 | | | | 118 59 12 | | 118 51 50 | | | | 118 51 30 | | | 118 29 39 | | 118 21 10 | | | LAT~
I~
TUDE | | 45 43 21 | | | | | | 46 40 43 | , | 46 43 64 | | | 46 42 34 | | | 46 41 36 | | | | 46 41 35 | | 46 39 46 | 46 39 46 | | | | 46 39 43 | | 46 39 53 | • | 46 40 46 | | | LOCAL
TOFNT-
T-
FJFR | | 14/295-09401 | | | | | | 14/295-19001 | | 14/305-08601 | | | 14/30F-10P01 | | | 14/30F-20A01 | | | 14/30E-27 JO1 | 14/316-19901 | | 14/31F-36901 | 14/31F-36902 | | | 14/31E-36J01 | 14/32E-31001 | | 14/34F-25P0101 | | 14/34E-19401 | | Table 2.--Continued | | | COL I - | | HARD | | MAGNE | | | Spotum | POTAS- | |---------------|----------|------------|--------|-----------|------------|----------|------------|----------|-------------|--------| | LOCAL | | FECAL. | HAPO- | NESS. | CALCIUM | STUM | SONTUM. | | -04
-000 | STUM | | 10521 | 0.A -E | 0 · / | NF 55 | BONDAR | SOLVED | 015E | 014E | | I ACE F | 013- | | נוצה | SAMPLE | (COLS./ | AS | (MG/L | (MG/L | 1/9%) | 7/5M) | PERCFNT | RATIO | (MG/L | | | | 100 ML) | CAC03) | CAC03) | AS CA) | AS MG) | AS NA) | SOJIUM | | AS K) | | | | | | | | | | | | | | | | | | FRANKL IN | | | | | | | | 14/295-09401 | 65-01-26 | ! | 102 | 0 | 21 | 12 | 4 3 | 9* | 1.9 | 7.9 | | | 66-01-27 | ; | 6 | 0 | 20 | 12 | 45 | 47 | 2.0 | 8.0 | | | 67-02-13 | : | 95 | 0 | 20 | 11 | 44 | 48 | 2.0 | 7.7 | | | 67-03-15 | ; | 102 | 0 | 21 | 2 | 42 | | 1.9 | 7.8 | | | 67-04-26 | ; | Ď. | 0 | 20 | 12 | F# | 9 | 1.9 | E • 80 | | | 68-03-04 | ' ¦ | 104 | c | 22 | 12 | ** | 94 | 1.9 | 8.0 | | | 69-06-12 | : | 104 | • | 25 | 15 | 4 | 4 | 1.9 | 7.0 | | 14/29F-19001 | 87-08-31 | 1 | 234 | 91 | 64 | 27 | 41 | 92 | 1.2 | - | | | A3-03-10 | 1 | 244 | 95 | 20 | 6 | 42 | 56 | 1.2 | - | | 14/30F-08601 | 52-08-00 | 1 | 166 | ; | ! | : | ! | 1 | 1 | : | | | 59-03-13 | ; | 786 | 545 | 140 | 106 | 7 | 10 | - | 7.8 | | | 65-06-19 | 1 | 499 | 1 | 1 | : | : | : : | : 1 | : 1 | | 14/30E-10P01 | 52-07-00 | ; | 143 | 0 | 56 | 13 | 30 | 30 | 1.1 | 5.1 | | | 82-08-31 | ; | 153 | m | 30 | 19 | 25 | 23 | æ. | 4.8 | | | 83-03-14 | ₽ | 147 | œ | 59 | 18 | 21 | 23 | 6 0 | 4.7 | | 10405-305/41 | 52-01-00 | ! | 8 | c | 5 | 4.0 | 63 | 2.5 | | ij | | | 58-03-13 | ; | 317 | 189 | * | 32 | 4 | * | ç | 7.8 | | | 62-06-20 | ! | 193 | ; ; | ; | \ | ! | : 1 | 1 | : 1 | | 14/305-27J01 | 53-11-00 | : | 262 | 124 | * * | 37 | 9 | 13 | r. | 5.9 | | 14/31E-19901 | 82-09-02 | ; | 177 | 28 | 36 | 7 | 25 | 21 | .1 | 4.4 | | | 83-03-11 | ₹ | 169 | 11 | 33 | 2 | 25 | 21 | æ | 4.9 | | 14/31F-36901 | 55-06-30 | ; | 101 | 0 | 19 | 13 | 25 | 0 4 | 1.4 | 6.6 | | 14/31E-36902 | 42-04-28 | ; | 140 | 0 | 88 | 17 | 9 | 12 | ., | 4.6 | | | 55-06-30 | ! | 170 | 39 | 35 | 20 | 13 | 1 | ₹. | 3.9 | | | 58-03-13 | | 137 | 13 | 30 | 15 | = | 15 | ₹. | 7.5 | | 14/315-36301 | 70-09-54 | : | 6 | 0 | 3.1 | e. | 72 | 68 | 11 | 6.6 | | 14/326-31001 | 55-06-30 | ; | 107 | 0 | 23 | 12 | 19 | 27 | €. | r. | | | 60-10-17 | 1 | 114 | - | 5 6 | 12 | -
8: | 24 | α. | 5.3 | | 4/34F-25P01D1 | 82-09-02 | 1 | 345 | 104 | 7.7 | 37 | 04 | 20 | 1.0 | ٦.0 | | | 83-05-20 | ₽ | 331 | 101 | 73 | 36 | 4.1 | 21 | 1.0 | 5.7 | | 14/36F-19401 | 82-09-01 | ; | 237 | 0 | 37 | 35 | 8 | 4 | 2,3 | 19 | | | R3-05-20 | د1 | 236 | | 32 | 36 | . | 4 | 2.3 | 21 | Table 2.--Continued | FLUO-
RIDE.
DIS-
SOLVED
(MG/L | | , | 1.
5.
1. | | !
N 4 1 70 4 | r. i 4 i 4 |
 | 9. | |--|----------|--|--|--|--|--|---|----------------| | CHLO-
RIDE •
DIS-
SOLVED
(MG/L
AS CL) | | M d d d d
m m m m m | 17
17
30
29 | 128
15
7.7
8.3 | 14
66
17 | 11
12
9.5
20
4.8 |
11
13
13
13
13
13
13
13
13
13
13
13
13
1 | 16
14 | | SULFATE
DTS-
SOLVED
(MG/L
AS SO4) | | | 46.
100.
110.
110. | 358
148
43
79 | 46 A B B B B B B B B B B B B B B B B B B | 4 L (), (), () | 71
70
90
90
90 | 17 | | ALKA-
LINTTY
LAB
(MG/L
AS
CACO3) | | !!!!! | 143 | 139 | 149 | æ | 241 | 396
402 | | ALKA-
LINITY
FIELD
(W3/L
AS
CAC03) | | 15 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 148 | 241 | 183
128
138 | 181
130
131
124 | 131 126 113 | :: | | CAR-
BONATE
IT-FLD
(MG/L
AS
CO3) | | ::::: | 00 | 11100 | 11110 | °!!!! | 11100 | c c | | CAR-
BONATE
FET-FLD
(MG/L
AS CO3) | FRANKLIN | c000c | 60111 | c! c!! | ce e | 10000 | 54011 | 11 | | BICAR-
BONATE
IT-FLO
(MG/L
AS
HCO3) | | ::::: | 180 | 190 | 193 | 1 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 296 | 4 0 4
4 0 4 | | BICAR-
BONATE
FET-FLD
(MG/L
AS
HCO3) | | 196
192
192
190 | 190 | 294 | 223
156
158 | 144
158
146 | 139 | 11 | | OATE
OF
SAMPLE | | 65-01-25
66-01-27
67-02-13
67-03-15
67-04-26 | 69-03-04
69-05-12
82-08-31
83-93-10
52-08-00 | 58-03-13
62-06-19
52-07-00
82-08-31
83-03-14 | 52-01-00
54-03-13
62-06-20
53-11-00
82-09-02 | 83-03-11
55-06-20
42-04-28
55-06-30
58-03-13 | 70-09-24
55-06-30
50-10-17
82-09-02
83-05-20 | 83-05-20 | | LOCAL
TOENT-
I-
FIER | | 14/295-09401 | 14/295-19001 | 14/30E-10001 | 14/30F-20401
14/30F-27J01
14/31F-19901 | 14/31F-36901
14/31F-36902 | 14/31F-36J01
14/32F-31D01
14/34F-25P01D1 | 14/34E-19401 | Table 2.--Continued | NITRO-
GEN•
OF>+NO3
NIS-
SOLVED
(MG/L | ::::: | 11 11 11 | 1114 | i | 6 11111 | 7.7 | . 3
9
9 | |---|--|--|--|--|--|--|----------------------| | NITAD-
GFN•
NN2+NO3
TOTAL
(M9/L
AS N) | 11111 | 11111 | 11111 | 11111 | 11111 | 11111 | :: | | NITRO-
GEN.
NITRATE
TOTAL
(MG/L
AS NO3) | 1.6
1.1
2.3
4.1 | 2.6 | 69
63
8 4 | .00
55
30
17 | 11 1 7 | C C 1 1 C C C C C C | 11 | | SOLIDS,
SUM OF
CONSTITUENTS,
TUENTS,
SOLVED
(MG/L) | 275
272
243
274
275 | 296
279
408
437 | 977
280
259
259 | 3256
3999
448
311 | 292 223 223 190 | 283
210
495
487 | 545
547 | | SOLIDS. PESIDUE AT 180 DEG. C DIS- SOLVED (WG/L) | 713
256
256
250
269
289 | 300 | 1180 | 174 | 25.53
24.2
300
200
200 | 269 | 11 | | SILICA,
DIS-
SOLVEO
(WA/L
AS
SID2) | 7 | 50
51
63 | 40
53
51 | ر
ا ۱ ا قد | 8 7 4 E | 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 100 | | DATE
OF
SAMPLE | 65-01-26
65-01-27
67-02-13
67-03-15
67-04-26 | 69-03-04
69-06-12
82-09-31
83-03-10 | 58-03-13
62-05-19
52-07-00
82-08-31
83-03-14 | 52-01-00
59-03-13
52-06-20
53-11-00
92-09-02 | 83-03-11
55-06-30
42-04-28
53-06-30
58-03-13 | 70-09-24
55-06-30
50-10-17
82-09-02
83-05-20 | 82-09-01
93-05-20 | | LOCAL
INFNI-
II-
FIFR | 14/295-09401 | 14/29E-19001
14/30E-09601 | 14/305-10P01 | 14/305-20101
14/30F-27J01
14/315-19401 | 14/31E-36R01
14/31E-35R02 | 14/31E-36J01
14/32E-31D01
14/34E-25P01D1 | 14/36F-19401 | Table 2.--Continued | MANGA-
NESE+
OIS-
SOLVED
(UG/L
AS MN) | | 11111 | 1177 | ; | 111~9 | 1111 | m | w m | 45 | |---|----------|--|----------------------------------|--------------|--|--|--|--|----------------------| | MANGA-
NESE,
TOTAL
PFCOV-
EPABLF
(UG/L
AS MN) | | 0 0 4 A 4 | 0.00 | 1 | ::::: | 1111 | 1 111111 | 0 1 1 1 1 | ;; | | IRON.
DIS-
SOLVED
(UG/L
AS FE) | | 11111 | 4 (| ? ! | !!! [®] & | :::: | 130 | 1014 | 32 | | IRON,
TOTAL
RECOV-
EDABLE
(UG/L
AS FE) | נרוא | 770
70
70
80
30 | 04 L I I | 1 | 810 | 510 | 1 11410 | 06 1 A7 | 11 | | DATE
OF
SAMOLE | FRANKLIN | 65-01-26
46-01-27
67-02-13
67-03-15
67-03-26 | 68-03-94
69-06-12
82-08-31 | 6 | 58-03-13
62-05-19
57-07-00
82-08-31
83-03-14 | 52-01-00
58-03-13
62-04-20
53-11-00 | | 70-09-24
55-06-30
60-10-17
R2-09-02
83-05-20 | 82-09-01
83-05-20 | | LOCAL
IOENT-
I-
FIER | | 14/295-09801 | 14/29E-19001 | 14/305-08601 | 14/30E-10P01 | 14/305-27-001 | 14/31E-19R01
14/31E-36R01
14/31E-36R02 | 14/31E-36JO1
14/32E-31DO1
14/34E-25PO1D1 | 14/36E-19N01 | Table 2. -- Continued | TEMPE3.
Ature
(Deg C) | | ຕໍ່ວັ | 15.3 | 28.0 | 21.1 | 18.5 | 21.0
22.0 | . 1 | 18.5 | | 18.0 | 18.0 | 21.7 | 20.1 | ; | ! | 16.5
21.5 | ; | 21.4 | i | 18.0 | 3, | ; | ; | ; | 23.5 | |---|-------|--------------------------------|----------------------------------|--|--------------|---------|----------------------------------|----------|--------------|--------------|--------------|--------------|--------------|----------------------------------|--------------|--------------|------------------------------|-----|----------------------|--------------|--------------|--------------|----------|----------------------|----------|--------------| | PH
(STAND-
ARD
Units) | | | 7.9 | 0.7
7.7
7.8
1.8 | 8. 7 | • | 9 4 6 | 4.6 | 4.8 | | 7.9 | 8.1 |
 | | 4.8 | ; | 7.9 | 7.6 | 8.0 | 1 | 8.1 | 7.9 | 8.0 | | | • | | SPF-
CIFIC
CON-
DUCT-
ANCE
WMHOS | | 240 | 262
350
348 | 330
291
310
291 | 300 | 862 | 313
313
318 | 40°E | 262 | 451 | 283 | 238 | 210 | 310 | 303 | 1 | 298
330 | 327 | 390 | 1 | 122 | £66 | 790 | 0 K | 587 | 575 | | ELFV. OF LAND SURFACE DATUM (FT. AROVE | | 30. | 550.00
550.00
550.00 | 660.00 | 680-00 | 680.00 | 0.00 | ; | 774.00 | 62.0 | 534.00 | 78.0 | 50.0 | 700.00 | ; | -92 | 725.00 | | 530.00 | 550.00 | 570.00 | 1216.00 | 1 | : : | ; | ; | | DEPTH
OF
WELL•
TOTAL
(FEET) | | 970 | 412
236
236 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4 4 | 445 | 522
522
522 | 522 | 669 | 1396 | 1396 | 454 | 993 | 450
450
450 | 892 | 358 | 1123 | 989 | 173 | 85 | 141 | 800 | 800 | > | | | | DATE
OF
SAMPLE | | 2-08-1 | A3-03-16
A2-08-12
A3-03-16 | 52-08-07
54-10-28
59-10-28
70-09-17 | | | 53-09-03
54-10-28
58-01-07 | 46-63-54 | 53-09-03 | 59-03-23 | 60-10-18 | - | 7 | 82-03-19
82-08-19
83-03-15 | | | 54-10-28 | | 82-08-13
83-03-16 | 4-00-0 | 0 - 10 - 1 | 0-01-2 | 62-06-15 | 62-08-15
62-08-15 | 62-09-00 | 59-11-17 | | GFO-
LOGIC
UNIT | GRANT | 122WNPW
122YKIM | 1224KIM
1224NPM
1224NPM | ::::: | , | 12250LH | ::: | ; | 1 | ; | : 1 | 122WNPM | 122WNPW | 12250LM
12250LM
12250LM | ; | 121CBRV | ;; | ; | 122WNPM | ; | | 121CAPV | 121C9PV | 7 | . 2 | ; | | SEG.
NO. | | 01 | 0 1 | 0 1 | 5 | ; ; | 0 | | 01 | 0 | 0.1 | 01 | 01 | 0.1 | 0 | 01 | . 0 | | 0.1 | 0 | 0 1 | 01 | | | | 03 | | LONS-
I-
TUDE | | 119 53 22
119 53 50 | 119 53 14 | 119 38 24 | 81 95 911 | | 119 41 38 | | 119 44 33 | 9 22 9 | 119 55 18 | 119 53 43 | 9 54 2 | 119 38 29 | 19 33 5 | 19 27 1 | 119 28 28 | | 119 56 33 | 19 55 5 | 119 55 43 | 19 45 1 | | | | 119 45 17 | | LAT-
I-
TUDE | | 46 42 17
46 40 39 | 46 39 26 | 46 44 08 | 46 44 07 | | 46 41 35 | | 46 39 22 | 6 41 3 | 46 49 14 | 46 44 31 | ~ | 46 44 29 | 6 45 1 | 484 | 46 44 44 46 46 29 | | 46 51 39 | 6 50 1 | 46 50 00 | 6 54 2 | | | | 46 54 28 | | LOCAL
INENT
I -
FIER | | 14/23E-13D01
14/23F-26A01D1 | 14/23E-36L02 | 14/25E-01001 | 14/255-02501 | | 14/25F- 21 B01 | | 14/25E-31401 | 14/27E-24C01 | 15/23E-03401 | 15/23E-35J01 | 15/23F-35P01 | 15/25E-35J01 | 15/26E-28901 | 15/275-05901 | 15/27E-32E01
15/27E-34L02 | | 16/23E-21J01 | 16/235-34001 | 16/235-34F02 | 16/24E-01601 | | | | 16/245-01502 | Table 2.--Continued | POTAS-
SIU4.
DIS-
SOLVED
(MG/L
AS K) | | 6 6
6 9 | æ 4 4
4 ⊷ Ω | 19
12
6.0
11 | ນເພ.ຈ.ຈ.
ນິທານ μ. 4 | 26 55
26 55
4 4 | W / B 4 4 | 17 | 6.5
6.2
3.5 | 100
100
9.6 | |---|-------|-------------------------------|----------------------------------|--|--|--|--|--|--|--| | SODIUM
AD-
SORP-
TION
PATIO | | 1.8 | 644 | 6
6
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8 | r. r. o. o. o. | & &
& ₩ | | 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 77143 | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | | PERCFNT | | 50
4
6 | 44
12
13 | 2 2 2 3 8 8 8 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 23
23
24
27 | 26
17
76
77 | 1 4 4 6 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 5 1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 |
30
31
15
32 | ************************************** | | SOLTUM,
DIS-
SOLVED
(M3/L
AS NA) | | | 30
110 | 74
20
119
71 | 17
22
21
21 | 20
111
80
80
7.8 | 20 50 13 13 13 13 13 13 13 13 13 13 13 13 13 | 41
95
35
35 | 30
30
7.6 | 44444
00000 | | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | | 5.6 | 5.7
111 | 40 II 8 8
8 8 8 8 | 111
111
111
9.6 | 9.8 | 8.7.2
5.7. | 33.3
39.8
6.0
6.1 | 16
16
7.0
7.9 | 44844 | | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | | 13 | 19
46
5 | 12
28
24
24
24
24 | 30
30
30
30
30 | 30
25
7.0
7.0 | 26
13
13
27 | 1,4 KE 4 | 30
30
45
44
04 | 0 6 0 0 K | | HARD-
NESS.
NON CER-
RON (CE (MG/L
CACO3) | GRANT | 00 | 37
29 | •••• | 00000 | 04006 | 00000 | 00000 | 000M0 | 0000 | | HARD-
NFSS
(MG/L
AS
CACO3) | | 10
4
4
8 | 71
160
158 | 48
98
115
95 | 120
120
115
115 | 115
108
21
19 | 98
56
56
113 | 188
188
89
57 | 141
141
104
92
199 | 199
196
199
199 | | COLI-
FORM.
FECAL.
9.7
UM-MF
(COLS./ | | 11 | 717 | 11111 | 17111 | 11111 | 11717 | 11111 | 12111 | 11111 | | 9ATE
OF
SAMPLF | | 82-08-13
82-08-12 | 83-03-16
82-08-12
83-03-16 | 52-08-07
54-10-28
59-10-28
70-09-17 | 82-08-11
83-03-16
53-09-03
54-10-28 | 59-03-24
53-09-03
59-03-23
59-10-28
60-10-18 | 92-08-12
82-08-12
83-03-15
82-08-19
83-03-15 | 69-05-14
44-00-00
54-10-28
58-01-07
59-03-24 | 82-08-13
83-03-16
44-00-00
60-10-18
60-01-24 | 62-06-15
62-07-12
62-08-15
62-09-00
59-11-17 | | LOCAL
INENT-
I I-
FIER | | 14/23E-13001
4/23F-26A01D1 | 14/23E-36L02 | 14/25E-01901 | 14/25E-02C01
14/25E-21901 | 14/25E-31W01
14/27E-24C01
15/23E-03H01 | 15/23E-35J01
15/23E-35P01
15/25E-35J01 | 15/246-28001
15/276-05P01
15/276-32E01
15/276-34L02 | 16/23E-21J01
16/23E-34C01
16/23E-34F02
16/24E-01601 | 16/24E-01502 | Table 2.--Continued | FLUO-
RIDE.
DIS-
SOLVED
(MG/L
AS F) | | ••••• | 410,0044 | | 0.000 | 0ee | wie | 61.100 | 01.01 | |---|-------|--|--|--|--|--|--|--|--| | CHLO-
RINE.
DIS-
SOLVED
(MG/L
AS CL) | | 2.6
4.3
3.8
10 | 6.70 N N N | 4 | 7.2
12.0
12.
1.5 | 1.7
1.8
7.1
7.1 | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 8
7.9
3.0
19.2 | 22
20
20
19 | | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | | # # # # # # # # # # # # # # # # # # # | 25
24
31 | 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 44866 | 22
23
23
23
23
23 | 4 8 8 8 8 F | 4 t 11 17 t | C O C M A | | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | | 115
124
125
123
129 | 11111 | 124 | 11111 | 88
98
127
118 | 11111 | 154 | 11111 | | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | | ::::: | 129
116
126
116 | 127
128
128 | 124
104
177
177 | 11111 | 119
240
120
125 | 112
99
207 | 2008
2008
2008
2008 | | CAR-
BONATE
IT-FLD
(MG/L
AS
CO3) | | • • • • • • | 11111 | 00111 | 11111 | ••••• | 11111 | 00111 | 11111 | | CAR-
BONATE
FFT-FLD
(MG/L
AS CO3) | GRANT | ::::: | 01100 | 11000 | 00000 | 11111 | m 000 | °° | 00000 | | BICAR-
BONATE
IT-FLD
(MG/L
AS
HC03) | | 137
143
175
156 | 11111 | 145 | ::::: | 104
116
143
153 | 11111 | 193 | ::::: | | RICAR-
BONATE
FET-FLD
(MG/L
AS
HCO3) | | 11111 | 157
162
154
161 | 155
156
156 | 157
127
216
216
121 | 11111 | 139
293
146
152
150 | 137
108
252 | # # # # O | | DATE
OF
SAMPLE | | 82-08-13
82-08-12
83-03-16
82-08-12
83-03-16 | 52-08-07
54-10-28
59-10-29
70-09-17
71-10-08 | 82-04-11
83-03-16
53-09-03
54-10-28
59-01-07 | 59-03-24
53-09-03
59-03-23
59-10-28
60-10-18 | 82-08-12
82-08-12
83-03-15
83-03-15 | 69-05-14
44-00-00
54-10-28
59-03-24 | 82-08-13
83-03-16
44-00-00
60-10-18
60-01-24 | 62-06-15
62-07-12
62-08-15
62-09-00
59-11-17 | | LOCAL
IDENT -
I -
FIER | | 14/23F-13001
4/23E-26A01D1
14/23E-36L02 | 14/25E-01501 | 14/25E-02C01
14/25E-21901 | 14/25E-31401
14/27E-24C01
15/23E-03H01 | 15/23E-35-01
15/23E-35-01
15/25E-35-01 | 15/26E-28001
15/27E-05R01
15/27E-32E01
15/27E-34L02 | 16/23F-21J01
16/23F-34C01
16/23E-34F02
16/24E-01G01 | 16/24E-01602 | Table 2.--Continued | LOCAL
IDENT-
I-
FIER | DATE
OF
Sample | SILICA.
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS. RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) | SOLIDS.
SUM OF
CONSTI-
TUENTS.
DIS-
SOLVED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS NO3) | NITRO-
GEN;
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN+
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | |-------------------------------|----------------------|---|--|---|--|--|---| | | | GRANT | | | | | | | 14/23F-13501 | 2-08-1 | 57 | . | 198 | : | ; | • | | 4/23E-26401D1 | 2-08-1 | 53 | ! | 206 | ! | .1 | 4 | | | 3-03-1 | 51 | ! | 218 | ! | : | • | | 14/23E-36L02 | 82-08-12
83-03-16 | 31 | 11 | 228
233 | 11 | 11 | 1.2 | | 14/25E-01001 | 2-09-0 | 75 | 265 | 270 | 1.1 | : | ; | | | 4-10-2 | 61 | 229 | 230 | .10 | ; | ; | | | 9-10-5 | 59 | 228 | 225 | 1.9 | ! | ! | | | 70-09-17
71-10-08 | 5.
6.
4. | 222 | 215
238 | e ! | 16. | : : | | | | ţ | | ŕ | | | ć | | 14/25E-02C01 | 1-60-7 | ה
ה
ה | : | 25.2 | ; | : | ים
ים
י | | 14/256_21801 | 3-00-5 | , , | E 9 C | 747 | | : : | . : | | */ £3E = £180 | 4-10-2 | 9 0 | 250 | 76.7 | | : : | : : | | | 58-01-07 | ; | 239 | 31 | 8.0 | 1 | : | | | 9-03-2 | 19 | 232 | 243 | | ; | : | | 4/25F-3140 | 3-09-0 | 4 | 184 | 186 | . eo | ; | ; | | 14/27E-24C01 | 59-03-23 | 49 | 316 | 325 | .10 | : | ; | | | 9-10-5 | 63 | 322 | 325 | 5 | ! | : | | 15/23E-03H01 | 0-10-1 | 54 | 181 | 175 | 1.5 | : | : | | 23 | 2-04-1 | 35 | ; | 160 | i | ; | .54 | | 5/23E-35PA | 2-08-1 | 53 | ! | 172 | ; | ; | <.10 | | 1 | 3-03-1 | 7.
4 (| ! | 180 | ! | ! | ۰.10
وورد | | 15/255-35301 | 93-03-15 | 95 | ! ! | 238 | ! ! | : : | .10 | | E /246-5 | 0.050.1 | 4 | 000 | 220 | 00 | ; | ; | | 5/27F-0 | 0-00-9 | 6.4 | 4 | 1 | : ! | ; | ; | | 15/27E-32E01 | 54-10-28 | 54 | 231 | 225 | .10 | ! | ; | | 5/27E-3 | 9-01-0 | ; | 262 | 1 | 2.5 | ; | ; | | i
i | 2-03-6 | 73 | 249 | 256 | 2.1 | : | : | | 16/235-21J01 | 2-08-1 | 55 | ! | 280 | : | 1 | .10 | | | 3-03-1 | 5, | | 274 | ; | : | •36 | | 23E | 44-00-00 | 25 | 175 | ! | ; | ; | ; | | 6/23E- | 0 - 10 - 1 | 31 | 4 | 146 | 7.4 | : | • | | 6/24F- | 0-01-2 | 21 | 80 | 383 | •10 | : | : | | | 2-06-1 | 64 | 382 | 388 | .30 | 1 | ! | | | 2-07-1 | 51 | 385 | 340 | .20 | ! | ; | | | 2-08-1 | 48 | 382 | 387 | 00. | 1 | ; | | | 62-09-00 | 4 (
60 (| 381 | 388 | 00. | ! | ! | | 16/24E-01602 | 9-11-1 | 57 | 380 | 386 | • 10 | ! | ! | Table 2.--Continued | MANGA-
NESE.
DIS-
SOLVED
(UG/L
AS MN) | | 54 | S | - (| 17 | ; | ; | ; | ; | ; | - | * | ; | ; (| } | ; | ; | ; | ; | ; | ۲ | 15 | 4 | £ (7 | | ; | ; | ; ; | : : | | 5. | 4 | ; | ; | f | ; | ; | ; | 1 | • | |---|-------|--------------|-----------|------------------|----------------|--------------|-----|------|-----|--------|--------------|--------|--------------|----------|---|------|--------------|--------|---------------|----------|--------------|------------|--------|-------------|---|------------|------------|---------------|-------|---|---------------|----------|--------------------|--------------|----------|---|----------|-----|---|--------------| | MANGA-
NFSE,
101AL
RECOV-
FRABLE
(UG/L
AS MN) | | : | ; | ; | : : | : | ; | ; | <20 | 06 | ; | ! | ; | 1 1 | | ; | ; | ; | : | : | ; | ; | ; | : : | | 650 | ; | : : | : : | | ; | : | ; | : | ; | ; | : | ! | : | ; | | IRON.
DIS-
SOLVED
(UG/L
AS FE) | | 19 | 63 | 0 1 | - 4 | ; | ! | ; | ; | : | 63 | 72 | ; | ! ! | ļ | ! | ; | ; | : | : | 80 | 6 3 | 01 | Ţ 4 | | ! | : | ; ; | 1 | | 51 | 2 | ! | : : | ; | ! | ; | : | ; | : | | IRON.
TOTAL
RFCUV-
ERABLE
(UG/L | _ | ; | ; | • | : : | 220 | 160 | <10 | 140 | 80 | ; | 1 | 0
0
1 | 2 2 | 2 | 30 | 80 | 2 (| 077 | ? | ; | ; | ; | : : | , | 90 | ! 6 | 70 | 0.0 | | ! | f : | 1 0 | 0.46 | 200 | ന | 100 | 100 | m | ~ | | DATE
OF
SAMPLE | GRANT | 2-08-1 | 2-08-1 | 3-03-1 | 83-03-16 | 2-04-0 | • | -10- | 0 | 1-10-0 | 2-08-1 | 3-03-1 | 3-03-0 | 54-10-28 | | AL C | 3-09- | 2-00-6 | 2-01-6 | 1-01-0 | 2-08-1 | 2-08-1 | 3-03-1 | 83-03-15 | | 9-0% | 00-4 | 58-01-07 | 9-03- | : | 82-08-13 | 1-00-0 | | 1-01-0 | 7-10-0 | 9 | 62-07-12 | õ | ٥ | 7 | | LOCAL
IDENT-
I-
FIER | | 14/23E-13D01 | ~ | 14.700 E. 24.140 | / c 3t = 30L U | 14/25E-01N01 | | | | | 14/25E-02C01 | | 14/25E-21R01 | | | | 14/255-31M01 | -1/2/4 | מוונים שרכי ש | 7
 15/23E-35J01 | 5/23E-35P0 | 7 | 19765-35761 | | 5/26E-2800 | 7/2/6-03/0 | 15/27F-36F 11 | | i | 15/236-21,001 | 30077 | - שליט / ס
המלי | 15/23E-34FUC | 0/ C#E- | | | | | 16/24E-01602 | Table 2.--Continued | TFMPE2-
ATURE
(DEG C) | | 24.5 | S | 3 |) | : | | : | 1 | : | | 18.1 | 17.5 | 20.9 | 18.3 | ; | 8.6 | 1 | ; ; | ; ; | . 1 | : : | 1 | : | 17.3 | 15.9 | 16.9 | | 22.60 | 9 1 | 16.7 | 16.2 | • | | 16.5 | ; | : | ; | i | , u | 6.61 | } ; | ; ; | |---|-------|--------------|-----|-----|-----|----------|---|----------|-----|-----|-----|--------------|---------|--------------|----------|--------------|---------|----------|-------------|-------------|---------------|--------------|----------|--------------|--------------|-----------|--------------|---|----------------|---------------|--------------|-------------|---|--------------|----------|--------------|----------|----------|----------|----------|----------|----------|----------| | PH
(STAND-
ARD
UNITS) | | • | | | • | 4.9 | • | 7.8 | 7.9 | 7.9 | 7.7 | 7.6 | • | | 7.7 | | • | | • | • | • | 7 | • | • | ٠ | • | 7.7 | 1 | ٥. ٢ | | 7.8 | 7.6 | | o
6 | 7.9 | 7.7 | 7.9 | 7.7 | | • | 0 0 | • | 7.8 | | SPE-
CIFIC
CON-
DUCT-
ANCE | | 581 | 598 | 584 | 404 | 612 | | 612 | 639 | 617 | 7 | 1000 | 940 | 510 | 530 | 10 | 1040 | 27.2 | ה כל
ה | 7 000 | 0071 | 15.60 | 2061 | 1720 | 150 | 735 | 340 | 1 | 0.40 | 45.6 | 653 | 640 | | 106 | 432 | 612 | 471 | 454 | 007 | 700 | 346 | 7 6 | 341 | | ELFV. OF LAND SURFACE DATUM (FT. ARROVE | | ! | ! | ; | ; | ł | | : | ! | ; | ! | 1230.00 | 1230.00 | 1030.00 | 1030.00 | 1180.00 | 1180.00 | 1001 | 7 | | 1 | ! ! | 1 | 1 | 0 | 940.0 | 1500.00 | | 1250.00 | 267.0 | 230.0 | 230.0 | | | 1154.00 | ! | ! | 1 | | 1 | | ; ; | : : | | DEPT4
0F
WELL•
TOTAL
(FEET) | | 915 | 915 | 915 | 2.0 | 915 | • | 915 | 915 | 915 | 918 | 811 | 811 | 106 | 907 | 7.0 | 7.0 | 0 | ۲, | 9 7 | 2 6 | 0 0 | 20 | 25 | 250 | 250 | 364 | 1 | 905 | 00.6 | 2 8 | 280 | | 285 | 295 | ; | ! | ! | 1 | ! | ! | ! | : : | | DATE
OF
SAMPLE | | 59-12-15 | | | | 63-07-03 | | 63-08-25 | 3-0 | 3- | 5-0 | 2-6 | 3-03-1 | 2-08-1 | 83-03-15 | 2-08-1 | 3-03-1 | 10-11-07 | 12-11-64 | 12-00-12 | 51-06-26 | 51-08-27 | 13-00-10 | 2-90 | 8-1 |]
 -E(| 83-05-16 | | 82-08-19 | 57-04-24 | 82-08-18 | 83-03-15 | | 56-05-18 | 60-10-18 | 58-10-53 | 60-06-07 | 60-11-07 | 80-90-13 | 01-00-10 | 21-60-19 | 60-00-00 | 63-05-31 | | GFO-
LCGIC
UNIT | GRANT | : | ; | ; | 1 | } | | ! | 1 | ; | ; | 122C9RV | 122CARV | 122YKIM | 122YKIM | 12250LM | 12250LM | 2000101 | 7 | ; ; | . ! | : 1 | | 1 | 10 | ,,,, | 122WNPW | | 122CARV | TO SOLVE | *dv. | 122MNPM | | : | ; | ! | ; | 1 | I | • | : | ! | : : | | SEQ. | | 0 | | | | | | | | | | 01 | | 6 | • | 0 | | 5 | 7 6 | 5 5 | ; ; | = | | 10 | 01 | ; | 10 | | 10 | 2 | 7 6 | • | | 0 | | 7 | | | | | | | | | LONG-
1-
1U7 <u>5</u> | | 119 45 17 | | | | | | | | | | 119 48 40 | | 119 37 38 | | 119 42 03 | | , | † C | 119 39 11 | , , | 2 | | 119 32 19 | 9 25 4 | i | • | | 119 53 56 | 4 4 4 | 110 48 19 | • | | 119 38 35 | | 119 39 17 | | | | | | | | | LAT-
I TUDE | | 46 54 28 | | | | | | | | | | 46 54 32 | | 46 53 58 | 1 | 46 54 07 | | í | יים
מיני | 46 00 34 | | 70.0 | | 46 50 06 | 6 53 0 | , | | | 46 57 25 | 4 50 3 | 46 56 57 | | | 46 58 33 | | 46 58 37 | | | | | | | | | LOCAL
INENT-
I-
FIER | | 15/24F-01302 | | | | | | | | | | 16/24E-04401 | | 16/255-01001 | | 16/255-04401 | | | 16/75-06-01 | 16/25-36501 | COTOC 1907 VI | 19/255-38401 | | 16/26E-34H01 | 16/27E-10401 | | 11/235-02301 | | 17/23F-23A01D1 | 17/245-04 101 | 17/245-22/01 | 10733-75771 | | 17/25E-11J01 | | 17/25E-11L01 | | | | | | | | Table 2.--Continued | POTAS-
SIUM.
DIS-
SOLVED
(MG/L
AS K) | | 011111111111111111111111111111111111111 | 11
11
11
11
9.5 | 33.3
3.3
3.1 | 9.0
55.4
24
27 | 24
9.1
11
1.7 | 12
13
6.1
5.9 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 | |--|-------|--|--|--|--|--|--|---|--| | SODIUM
AD-
SORP-
TION
RATIO | | | 1.5 | 8.7.2.4 | 40.00 F 8 | 9.1
1.0
3.0
3.0
1.0 | 33.
3.
1.
1.
4.
1. | 00000 | ∞ ∞ œ c. c. | | PERCENT | | 28
33
46
28
28
28 | 32
33
32
26
14 | 15
38
28
0 | 31
59
64
64 | 72
22
22
0 | 44
48
30
30 | 21
22
22
23
23 | 22
22
23
23
21 | | SONTUM,
DIS-
SOLVED
(MG/L
AS NA) | | 44444
80000 | 300 S | 36
38
45
52
45
52 | 320
220
250
250 | 320
40
37
9.9
8.6 | 110
110
13
46 | 88
80
80
80
80
80
80
80
80
80
80
80
80
8 | 48 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | MAGNE-
SIUM.
DIS-
SOLVED
(MG/L
AS MG) | | 24
24
27
27 | 27
27
28
37
63 | 62
23
60
62 | 26
73
37
42 | 37
36
30
26
21 | 29
31
19
26
26 | 46
25
36
27 | 27
26
23
24 | | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 444
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0 | 72
32
42
98 | 8 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 34
62
37
29 | 4 4 7 4 4
6 4 4 9 8 | 4 8 8 8 8 4 8 8 9 8 9 8 9 8 9 8 9 8 9 8 | 28
28
27
30 | | HARD-
NESS+
NONCAR-
RONATE
(MG/L | GRANT | 0
0
0
13
7 | 13
22
15
105
229 | 242
0
24
347
350 | 205 | 120
107
58
25 | 72
77
26
68
51 | 66
1
13
0 | 40.00 | | HAPN-
NFSS
(MG/L
AS
CACO3) | | 199
199
199
216
209 | 211
221
215
297
442 | 148
148
148
148
149
149
149 | 204
408
291
275
288 | 237
304
278
200
159 | 234
245
138
230
227 | 307
178
243
188
181 | 184
177
173
162
114 | | COLI-
FORM,
FECAL,
UM-MF
(COLS,/ | | 11111 | 11111 | 21212 | 11111 | 11211 | 12112 | 11111 | 11111 | | DATE
OF
SAMPLF | | 59-12-12
62-10-30
63-03-28
63-06-04
63-07-03 | 63-08-22
63-09-11
63-10-15
65-03-17
82-08-17 | 83-03-15
82-08-17
83-03-15
82-08-17
83-03-15 | 49-11-21
51-08-27
51-06-26
51-06-26
51-08-27 | 51-06-26
82-08-11
83-03-11
82-08-19
83-05-16 | 82-08-19
83-03-16
57-04-24
82-08-18
83-03-15 | 56-05-18
60-10-18
58-10-23
60-06-07
60-11-07 | 61-06-08
61-08-12
62-06-05
62-10-31
63-05-31 | | LOCAL
IDENT-
I-
FIER | | 16/24E-01502 | 16/24F-04401 | 16/25E-01001
16/25E-04N01 | 16/25F-06w01
16/25F-26901
16/25F-26P03
16/26E-30401 | 16/26E-34401
16/27E-10401
17/23E-02401 | 7/23E-23A01D1
17/24E-04J01
17/24E-22L01 | 17/25E-11J01
17/25F-11L01 | | Table 2. -- Continued | FLUO-
RIDE•
DIS-
SOLVED
(MG/L
AS F) | |
 | ,,, | ໜ່ວ ພ່ 4 ໜ່ | 71111 | 10000 | 11
7 | ! ** ! ! ! | 11111 | |---|-------|--|--|--|--|--|--|--
--| | CHLO-
RIDE•
DIS-
SOLVED
(MG/L
AS CL) | | 18
20
18
20 | 22
26
37
37 | 31
18
21
110
120 | 7.0
110
83
53
55 | 89
39
25
12 | 21
22
14
39
39 | 12
6.0
14.
9.4 | 2.4 R. 2.7 P. 2.0 P. 1.0 1. | | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | | 0 | 100
100
100
100
100
100 | 250
70
72
200 | 72
240
190
110 | 150
120
37
26 | 00
00
00
00
00
00
00
00
00
00
00
00
00 | 128
43
47
45 | 4 4 L W W
4 ተ ተ ተ ተ ተ ተ ተ ተ ተ ተ ተ ተ ተ ተ ተ ተ ተ ተ ተ | | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | | 11111 | 213 | 193
154
176
146 | 11111 | 194
171
142
134 | 162
168
162
176 | 11111 | | | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | | 208
208
208
203
202 | 198
199
200
192 | !!!!! | 102
746
664
684 | 650 | 112 | 241
177
230
189
180 | 180
180
172
172
180 | | CAR-
BONATE
IT-FLD
(MG/L
AS
CO3) | | ::::: | !!!! | 00000 | !!!!! | 10000 | 00100 | !!!!! | 11111 | | CAR-
BONATE
FET-FLD
(MG/L
AS CO3) | GRANT | 00000 | 0000 | ::::: | 00 | =1111 | !!°!! | 10000 | 00000 | | BICAR-
BONATE
IT-FLD
(MG/L
AS
HCO3) | | 11111 | 342 | 229
201
202
180
168 | 11111 | 222
208
169
166 | 204
198
206
204 | 11111 | 11111 | | RICAR-
BONATE
FET-FLD
(MG/L
AS
HCO3) | | 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2 2 4 4 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 11111 | 124
910
910
810
840 | 770 | 11511 | 294
216
280
230
220 | 220
220
210
210
220 | | DATE
OF
Sample | | 59-12-12
62-10-30
63-03-28
63-06-04
63-07-03 | 63-08-22
63-09-11
63-10-15
65-03-17
82-08-17 | 63-03-15
82-08-17
83-03-15
82-08-17
83-93-15 | 49-11-21
51-08-27
51-06-26
51-06-26
51-08-27 | 51-06-26
82-08-11
83-03-11
82-08-19 | 82-08-19
83-03-16
57-04-24
82-08-18
83-03-15 | 56-05-18
60-10-18
59-10-23
60-06-07
60-11-07 | 61-06-08
61-08-12
62-06-05
62-10-31
63-05-31 | | LOCAL
INENT-
I-
FIFR | | 16/245-01602 | 16/24E-04H0] | 16/25E-01301
16/25E-04v01 | 16/25F-06401
16/25E-26901
16/25F-26903
16/26F-30401 | 16/24E-34H01
16/27E-10H01
17/23E-02H01 | 17/23F-23401D1
17/24E-04J01
17/24E-22L01 | 17/25E-11J01
17/25E-11L01 | | Table 2.--Continued | NITRO-
GEN+
DIS-
SOLVED
(MG/L
AS N) | | : | 1 1 | : : | : | ; | į | : | . 4 | 7 | 7.6 | 2.4.5 | 14 | 10 | ; | : | : | : | ; | ; | 7.0 | * • • | 66. | | 07. | • | 3.7 | ; | : | : | ţ | : | ; | ; | ; | :: | |--|----------|--------------|--------------|------------------------------------|----------|----------|----------|------------|----------------------|-----|--|--------------|--------------|------------|--------------|--------------|--------------|--------------|----------|--------------|--------------|--------------|--------------|----------------|------|----------------|--------------|--------------|----------|--------------|----------|----------|----------|----------|----------|----------------------| | NITRO-
GEN+
NO2+NO3
TOTAL
(MG/L
AS N) | | 1 | 1 1 | : : | : | ; | • | 1 | ; ; | 1 | } } | : : | ; | : | ; | ; | : | ; | ! | : | : | 1 1 | 1 | 1 | ; | | 1 1 | : | ! | : | : | : | : | ; | : | 1 1 | | NITRO-
GEN•
NITRATE
TOTAL
(MG/L
AS NO3) | | •20 | 00. | 9 6 | 4 | .80 | .70 | .20 | 4. 0 | 1 | 1 1 | : | ; | : | : | •00 | ; | • | ; | ; | 1 | : : | : : | 1 | | | 1 1 | 1.9 | .70 | 00. | 00. | .60 | .00 | 00. | 00. | 00. | | SOLIDS.
SUM OF
CONSTI-
TUENTS.
DIS-
SOLVED | | 383 | 390 | 412 | 412 | 413 | 432 | 415 | 508
653 | 167 | 100 | 357 | 622 | 624 | 1 | : | : | ; | : | ; | 498 | 468 | 240 | 661 | */0 | ! ; | 412 | : | 290 | ; | ; | ł | ! | ; | : | :: | | SOLIDS,
RESIDUE
AT 180
DFG. C
DIG. C
SOLVED | <u>-</u> | 346 | 388 | 404 | 410 | 412 | 434 | 414 | 526 | | } | ; | ; | : | 378 | : | ; | ; | : | . } | ; | : 1 | | : 1 | | #C2 | 1 1 | ł | 284 | ; | ! | i | ; | ; | • | 11 | | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | GRANT | 50 | 00 0
√r √ | \$ 4
\$ | 4 | 67 | 25 | 4 8 | 4 r.
u 4 | , | ם
ה | יש כ | 37 | 39 | | | ! | | | ; | | | 09 | 25 | ~ | | 52 | ; | 51 | | ; | | | | | ; ; | | DATE
OF
SAMPLE | | 59-12-12 | 62-10-30 | \$3-50-59
\$3-09-0 * | 63-07-03 | 63-08-25 | 63-09-11 | 63-10-15 | 65-03-17
82-08-17 | , | ֓֞֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֓֓֓֜֜֜֜֜֜֜֜֜֓֓֓֡֜֜֜֜֜֜֜֓֓֡֓֜֜֜֡֓֜֜֜֡֡֡֓֜֜֡֡֡֜֜֡֡֡֡֜֜֡֡֡֜֜֡֡֡֡֜֜֡֡֡֡֜֜֡֡֡֜֜֡֡֜֜֡֡֡֜֜֡֡֡֜֜֡֡֜֜֡ | 83-03-15 | 2-0 | 3-0 | 49-11-51 | 51-08-27 | 51-06-26 | 51-06-26 | 51-08-27 | 51-06-26 | 82-03-11 | 63-04-11 | 83-05-16 | CO C | T) [| - (| 83-03-15 | 56-05-18 | 60-10-18 | 59-10-23 | 60-06-07 | 60-11-07 | 61-06-08 | 61-08-12 | 62-06-05 | 62-10-31
63-05-31 | | LDCAL
IDENT-
I-
FIER | | 16/245-01602 | | | | | | | 16/24E-04H01 | | 14/255-01001 | 10010-362701 | 16/25E-04N01 | | 16/25F-05M01 | 16/25E-26001 | 16/25E-26R03 | 16/26E-30H01 | | 16/26F-34H01 | 16/27E-10M01 | | 11/235-02801 | 17/23E-23A01D1 | | 17724E = 04J01 | 11/245-66101 | 17/25E-11J01 | | 17/25E-11L01 | | | | | | | ## Table 2.--Continued | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | | ; | ; | ţ | ; | 1 | ; | ł | : | ; | 9 | ın | m | m | 5 | 7 | ; | ł | ; | : | ; | ; | m | ~ 1 | v - | • | 31 | ~ | 1 6 | 7 (| 7 | ; | ; | ; | : | ! | ! | : | ; | ; | ; | |---|-------|--------------|--------------|----------|----------|------------|--------|----------|--------|---------------|--------------|--------|--------------|--------|--------------|--------|----------|-----|--------------|-----|--------|--------------|--------------|------|--------------|---|----------------|----|--------------|------------|---|--------------|----------|--------------|----------|----------|----------|----------|----------|----------|----------| | MANGA-
NESE,
TOTAL
PFCOV-
ERABLE
(UG/L
AS MN) | | 1 | ł | ; | | : : | : | ; | ! | <50 | ! | : | ; | ; | ! | i | : | ; | : | ł | ł | 1 | ! | ! | ! ! | | ! | ! | : 1 | | ! | ; | ! | ! | ! | 1 | ł | ! | ! | ! | 1 | | IRON.
DIS-
SOLVED
(UG/L
AS FE) | | ; | 1 | ; | ; | ! ! | : | ; | : | ; | 13 | 16 | ę | €. | | 0 | : | ! | ! | ! | : | ! | 13 | 18 | ם
נ | : | ις | 14 | 0,0
0,0 | n • | • | ! | ! | • | • | 1 | 1 | : | : | ! | ! | | IDON.
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | | 220 | 70 | 4 | 0.41 | 150 | 96 | 170 | 20 | 170 | : | ł | ! | ! | ! | ! | : | ! | ! | ! | ! | ; | ! | ! | ! ! | ļ | 1 | : | : | ! | ł | ! | 20 | ! | ! | ! | : | 1 | : | ! | ; | | DATE
OF
SAMOLF | GRANT | 50-12-12 | 62-10-30 | 63-03-58 | 40-60-69 | 63-07-03 | 3-08-2 | 63-09-11 | 3-10-1 | 5-03-1 | 2-08-1 | 3-03-1 | 2-04-1 | 3-03-1 | 82-08-17 | 3-03-1 | 49-11-51 | -08 | 51-06-26 | -06 | α
0 | 1-06 | 2-08 | 3-03 | 82-08-19 | 5 | 82-08-19 | | 57-04-24 | | | 56-05-18 | 60-10-18 | 58-10-53 | 60-06-07 | 60-11-07 | 61-06-08 | 61-04-12 | 62-06-05 | 62-10-31 | 63-05-31 | | LOCAL
IDENT—
I-
FIER | | 16/245-01602 | ************ | | | | | | | | 16/24E-04H01 | | 16/25E-01001 | | 16/25E-04N01 | | | • | 16/25E-26R03 | • | | 16/26E-34H01 | 16/27E-10N01 | | 17/23E-02R01 | | 17/23E-23A01D1 | | 17/246-04001 | ローンターコキンノノ | | 17/25E-11J01 | | 17/255-11601 | | | | | | | | Table 2.--Continued | TEMPE2-
Ature
(DEG C) | | ::: | 12.8 | | ::::: | 15.5 | 19.64 | 16.6
22.0
22.2
18.9 | 7.17
15.33 | |---|-------|----------------------------------|----------------------
--|--|--|--|--|---| | SH
(STAND-
4RD
UNITS) | | 0 0 0 0 I | 8.0 | 7 7 8 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 8 4 8 8 8
8 4 8 8 8 | 7.7.7.7.6.7.7.7.6.7.7.7.8.7.7.8.7.8.7.8. | 7.8
7.7
7.0
7.5
7.5
7.5 | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | | | SPE-
CIFIC
CON-
DUCT-
ANGE | | 368
615
397 | 1029 | 790
514
535
532
515 | 557
535
536
588
549 | 531
530
472
497
552 | 520
601
594
580
495 | 590
590
321
321
321
490 | 316
314
312
317
700
700
576 | | ELFV. OF LAND SUPFACE OATUM (FT. AROVE | | 1227.00 | 11 | 1148.00 | 11111 | 11111 | 1169.00
1169.50
1169.50
1169.50 | 1270.00
1274.00
1344.00
1344.00 | 133444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
1344
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444
13444 | | DEPTH
OF
WFLL+
TOTAL
(FEET) | | 957 | 110 | W 4 W O C C C C C C C C C C C C C C C C C C | 4444 | 44444 | 810
810
810
810 | 270
210
499
1002
1002
1002 | 1002
1002
1002
1002
1003
1003 | | DATE
OF
SAMPLE | | 63-10-10
55-07-00
56-02-00 | 57-03-18
70-12-03 | 82-08-18
42-04-27
61-05-04
56-05-10
57-05-20 | 58-10-23
59-05-07
59-11-18
60-06-07 | 61-06-08
61-10-12
62-06-05
62-10-31
63-05-31 | 63-10-10
51-03-00
71-09-24
82-08-18
83-03-11 | 51-04-25
92-08-11
44-00-00
59-10-28
62-10-28
63-04-09
63-04-09 | 63-07-03
63-09-13
63-10-16
65-03-17
83-03-17
83-03-16
60-01-24 | | 6E0-
L051C
UNIT | GRANT | ! ! ! | 121C9RV | 122#NP4 | 11111 | ::::: | 122C4RV
122C4RV
122C4RV
122C4QV | 1224NPM
122CRRV
122CRRV
122CRRV | 122C9RV
122C9RV
122C9RV
122C9RV
122C9RV
122C9RV
122C9RV | | SEG. | | 01 | 01 | 0001 | | | 0 | 0110011 | 0 1 | | Lons-
1-
Tude | | 119 39 17
119 39 55 | 119 37 00 | 119 35 00
119 33 53
119 38 42
119 25 33 | | | 119 29 20 | 119 15 10
119 07 23
119 02 30
119 03 14 | 119 03 14 | | LAT-
11-
TUDE | | 46 58 37
46 58 35 | 46 54 55 | 46 59 03
46 55 45
46 55 40
46 55 37 | | | 46 55 33 | 46 58 53
46 57 17
46 58 13
46 55 01 | 46 55 02 | | LOCAL
IDENT-
I-
FIEP | | 17/25E_11L01
17/25E-23<01 | 17/255-31401 | 17/26F-18401
17/26F-28001
17/26E-33D01
17/27E-10401 | | | 17/276-31501 | 17/29E-12001
17/29E-24C01
17/30E-10N01
17/30E-33K01 | 17/30E-33402 | ## Table 2.--Continued | POTAS-
SIUM.
DIS-
SOLVEO
(MG/L
AS K) | | 4 @ 4 R
- 0 0 0 0 0 | 13.9
6.0
7.7 | ~~~~~
~~~~~ | 4 W 4 4 W | 3.0
16
12
13 | 8.0
7.4
10
10 | \$ \$ \$ \$ \$ \$ \$ | 10
11
11
9.6 | |--|-------|--|--|--|--|--|--|--|--| | SODIUM
AN-
SORP-
TION
RATIO | | 8 F. 6 6 6 | 0 | | 0000000 | | | 4 80 4 4 4
0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 46.004
6.004 | | PERCENT | | 22
49
18
19 | 36
23
22
22
22 | 22
20
20
20
20 | 23
23
23
23 | 048
044
045
045 | 8 9 1 6 3
7 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 | 75
84
75
75 | 74
63
443
75 | |
SONTUM.
DIS-
SOLVED
(MG/L
AS NA) | | 22
74
17
18 | 0.44 C C C C C C C C C C C C C C C C C C | 30
28
28
28 | 28
23
24
24 | 7 2 4 4 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 33 3 3 3 4 3 5 4 3 5 4 3 5 4 5 6 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 | 75
76
78
7.8
7.8 | 55
58
57
75 | | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | | 2
2
4
4
8
8
8
8 | 35
18
21
37 | 36
37
37
36 | 37
33
34 | 35
19
18
20 | 19
15
20
20
10
10 | 40000 | 2.0
7.3
24
28
1.9 | | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | | 36
36
36
96
96 | 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 32
32
32
35
35 | 33 4 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 33
34
34
34 | 33
13
17
8.0
8.5 | 0 80 0 8
Noonn | 9.0
33
35
8.5 | | HARD-
NESS.
NONCAP-
RONATF
(MG/L
CACO3) | GRANT | 0
0
25
30
255 | 13
5
95
13 | 15
22
15
23 | 17
16
14
16 | 22
0
0
13 | 0000 | 00000 | 00000 | | HARD-
NESS
(MG/L
AS
CACO3) | | 164
156
163
164
535 | 264
154
199
225
230 | 228
235
228
240
240 | 230
229
227
221
231 | 227
166
180
167 | 161
94
80
29 | 29
30
29
29 | 31
60
181
203
29 | | COLI-
FCRM.
FCAL.
UM-MF
(COLS./ | | 11111 | 11111 | 11111 | 11111 | 11117 | 11111 | 11111 | 11111 | | OATE
OF
SAMPLE | | 63-10-10
55-07-00
56-02-00
57-03-18
70-12-03 | 82-08-18
42-04-27
61-05-04
56-05-10
57-05-20 | 58-10-23
59-05-07
59-11-18
60-06-07 | 61-06-08
61-10-12
62-06-05
62-10-31
63-05-31 | 63-10-10
51-03-00
71-09-24
82-08-18
83-03-11 | 51-04-25
82-08-11
44-00-00
59-10-28
62-10-30 | 63-04-09
63-06-04
63-07-03
63-08-27
63-09-13 | 63-10-16
65-03-17
82-08-11
83-03-16
60-01-24 | | LOCAL
INENT-
I-
FIER | | 17/25E-23<01
17/25E-23<01
17/25E-31\01 | 17/26E-18H01
17/26E-28R01
17/26E-33D01
17/27E-10H01 | | | 17/27E-31001 | 17/20E-12001
17/20E-24C01
17/30E-10N01
17/30E-33K01 | | 17/30F-33K02 | Table 2.--Continued | FLUO-
PIDE.
DIS-
SOLVED
(MG/L
AS F) | | ្រ • • • •
• • • • • • • • • • • • • • • | ພາກ ! ! | 11111 | 11111 | ່າເຈົ້າ | 7.5.1 | | ~ | |---|-------|--|--|--|--|--|--|--|--| | CHLO-
RIDE.
DIS-
SOLVED
(4G/L | | 7.1
15
13
13
46 | 37
340
340
7°5 | N 4 4 1- 6
W 0 6 8 8 | พ พ พ 🌣 œ
๛ ณ ๙ ๛ ๛
๛ ณ ๙ ๛ ๛ | 53.0
38.0
34.0
16.0 | 24
22
10
7.2
8.0 | 7.8
7.5
7.2
8.0 | 6.8
10
26
18
6.5 | | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | | 33
132
55
188 | 120
55
79
52
54 | W W W W W W | 3.0
2.0
2.0
2.0
2.0
2.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3 | 10 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 43
11
15
14 | 44444 | ት የአማር ነው።
ተመቀበር | | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | | :::: | 285 | ::::: | ::::: | 172 | 182 | 11111 | 192 | | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | | 172
157
138
134
278 | 149
114
212
214 | 213
213
213
213 | 213
213
205
197 | 205
171
184 | 172
135
140
141 | 139
153
140
137
138 | 139 | | CAR-
RONATE
IT-FLD
(MG/L
AS
CO3) | | ::::: | ?!!!! | ::::: | ::::: | 11100 | 10111 | 11111 | !! • • ! | | CAR-
BONATE
FET-FLD
(MG/L
AS CO3) | GRANT | 0 00 | 0 0 | 0 000 | 00000 | •••!! | 0 40 | 4 5 1 2 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 00110 | | BICAR-
BONATE
II-FLD
(MG/L
AS
HC03) | | ;;;;; | 315 | 11111 | !!!!! | 211
194 | 556 | ;;;;; | 214 | | RICAR-
BONATE
FFT-FLD
(MG/L
AS
HC03) | | 210
203
168
163
339 | 192
139
259
261 | 250
250
250
250
250 | 250
250
250
250
250
250 | 255
259
455 | 210
165
152
172 | 151
162
160
167
156 | 159 | | DATE
OF
Sample | | 63-10-10
55-67-00
56-02-00
57-03-18
70-12-03 | 32-78-18
42-04-27
61-05-04
56-05-10
57-05-20 | 58-10-23
59-05-07
59-11-19
60-06-07 | 61-05-08
51-10-12
62-05-05
62-10-31
63-05-31 | 63-10-10
51-03-00
71-09-24
82-08-18
83-03-11 | 51-04-25
82-08-11
44-00-00
59-10-28
62-10-30 | 63-04-09
63-06-04
63-07-03
63-08-27
63-09-13 | 63-10-16
65-03-17
82-08-11
83-03-16
60-01-24 | | LOCAL
INENT-
I-
FIFR | | 17/25E-23K01
17/25E-23K01
17/25E-31W01 | 17/26F-18401
17/26F-28501
17/26F-33501
17/27E-10401 | | | 17/27E-31501 | 17/24E-12001
17/29E-24C01
17/30E-10W01
17/30E-33K01 | | 17/30E-33K02 | | ซ | |-----| | ŏ | | Ψ | | | | Ē | | | | -1 | | u | | C | | Ö | | _ | | O | | - 1 | | Ì | | • | | ~ | | | | Ø | | H | | Ω | | ak | | H | | _ | | NITRO-
GEN,
GEN,
NOZ-NO3
DIS-
SOLVED
(MG/L | | ::: | :: | :::::::::::::::::::::::::::::::::::::: | ::::: | 11111 | 2.1 | | 11111 | 23 21 | |--|----------|----------------------------------|--------------|--|--|--|--|--|--|--| | NITRO-
GEN.
NDZ+NO3
TOTAL
(MG/L
AS N) | | | 11 | 11111 | 11111 | 11111 | 11911 | 11111 | 11111 | ::::: | | NITRO-
GEN*
VITRATE
TOTAL
(MG/L | | 00. | 45°-7 | 22
22
19
20 | 22
18
24
36
26 | 23
119
119
109
109 | 25. | 900 | .30
.30
.10 | | | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED | | 412 | 622 | 532
333
339 | 11111 | 11111 | 394
396
396
356 | 369
214
266
266 | 267
354
264
251
251
268 | 262
262
366
368
268 | | SOLIDS,
PESIDUE
AT 180
DFG. C
nIS-
SOLVED | <u>-</u> | 316 | 302
707 | 337 | 11111 | 11111 | 396 | 264
264
264
264 | 272
359
260
256
256 | 259
266
11 | | SILICA.
DIS-
SOLVED
(MG/L
AS
SIO2) | GPANT | 111 | 4 4 | 55
56
56
1 | !!!!! | !!!!! | 62
56
57 | 47
55
78
76 | 79
74
79 | 8 5 4 4 4 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | OATE
OF
SAMPLE | | 63-10-10
55-07-00
56-02-00 | -03-1 | 82-08-18
42-04-27
61-05-04
55-05-10
57-05-20 | 59-10-23
59-05-07
59-11-18
60-06-07 | 61-04-08
61-10-12
62-06-05
62-10-31
63-05-31 | 63-10-10
51-03-00
71-09-24
82-08-18
83-03-11 | 51-04-25
92-08-11
44-00-00
59-10-28
62-10-30 | 63-04-09
63-05-04
63-07-03
63-09-13 | 63-10-16
65-03-17
92-09-11
83-03-16
60-01-24 | | L 5CAL
10ENT-
1 +
F 1FR | | 17/25E-11L01
17/25E-23K01 | 17/25E-31W01 | 17/26F-18H01
17/26E-28001
17/26E-33D01
17/27E-10401 | | | 17/276-31001 | 17/29E-12D01
17/29E-24C01
17/30E-10N01
17/30E-33K01 | | 17/30E-33K02 | | ਲ | |-----------| | ă | | \approx | | 2 | | Ξ | | | | ú | | Ξ | | | | 0 | | ပ္ပ | | ı | | İ | | • | | 2 | | • | | ø | | _ | | Ω | | de | | Ĥ | | LOCAL
JRENT-
I-
FIER | DATE
OF
SAMPLE | IPON.
TOTAL
RFCOV-
ERABLE
(UG/L
AS FE) | IRON.
DIS-
SOLVED
(UG/L
AS FE) | MANGA-
NFSE.
TOTAL
RFCOV-
FRABLE
(UG/L
AS MN) | MANGA-
NESE+
DIS-
SOLVED
(UG/L
AS MN) | |-------------------------------|----------------------|---|--|---|--| | | GRANIT | | | | | | 17/25E-11L01
17/25E-23K01 | 63-10-10
55-07-00 | 11 | 11 | :: | 11 | | | 6-02-0 | : : | 50 | 1 1 | 1 1 | | 17/25E-31N01 | 0-12-0 | 70 | 9 !
n i | <20
<20 | 11 | | 7/26E-1 | 2-0 A | | 140 | ; | 160 | | 17/26E-28001 | | 0 4 5 | : | : | ; ; | | 7/27E-1 | 5-05 | 1 | : | ! ! | ! ! | | | 7-05- | ! | ; | ; | į | | | 8-11- | ; | : | ; | ; | | | 9-05- | ! | ! | ; | ; | | | 9-11- | ! | ; | ! | ; | | | 60-06-07 | ! ! | ; ; | : : | ; ; | | | 11.0 | , | ! | ! | | | | 61-06-08 | ! ! | 1 1 | ! ! | 1 1 | | | 1901 | ! ! | 1 | ! ! | ! ! | | | 7-10- | ł | ; | 1 | ! | | | 3-05- | ; | ! | : | ; | | | - | ; | ; | ŀ | ; | | 17/276-31001 | 0.0 | ! | ; | : : | ! | | 1 | -00- | 04 | ; | <20 | ! | | | 82-08-18 | ; | • | ! | 93 | | | | ! | 0 | ! | J | | 17/28E-12001 | 51-04-25 | ; | ; | : | ! ' | | //29E-2 | 0 0 | ; ; | £ 6 | : : | າ່ | | 7/30E-3 | 9-10 | 150 | 3 1 | : | ; | | | 2-10 | 80 | 30 | ; | ! | | | -04-0 | ¢10 | <10 | ; | ; | | | 3-06-0 | 30 | 30 | ; | 1 | | | 3-07-0 | 20 | 20 | ! | 1 | | | 63-09-13 | 9 6 | S 2 | : : | 1 | | | : | Ċ | • | | | | | -1.9-1 | 0.00 | 2 | \$ | ! { | | | -08-1 | 1 | 16 | 1 | 150 | | | 83-03-16 | 1 4 | 7 | ; | 69 | | 17/30E-33K02 | -01-2 | 450 | ; | ; | ! | Table 2.--Continued | TEMPE2-
Ature
(Deg C) | | ; | : : | ; ; | ; | L | ່ນໍາ | 16.0 | | ; | 1 | 1 | : : | | ; | 1 | : | . « | | : | ; ; | : | 16.6 | ; | 13.9 | 75.4 | ! |
• | ; | : | ; | 15.0 | ; ; | 1 | ; | ; | 4 00 | 21.1 | |---|-------|--------------|----------|----------|--------------|----------|-------------|--------------|---------|--------------|--------------|----------|----------------------|---------|----------|----------|----------|-----------------|---|----------|-----|------------|--------------|--------------|--------------|----------------|--------------|----------|----------|----------|-----|----------|----------|--------|----------|-----|---------------------------------------|--------------| | STAND-
ARD
UNITS) | | 4, | α α
• | 0 at | ; ; | 7.8 | | | | 7.8 | 7.5 | C • 8 | . 0 | 0 | A.4 | 7.8 | 80 i | ທີ່ ແ
ທີ່ ຕໍ | • | ر.
د | - 1 | 7.7 | 7.9 | ; | 7.8 | 7.0 | 7.5 | • • | 0. | • | | | F 4 | | 7.5 | | | 4.8 | | SPF-
CIFIC
CON-
DUCT-
ANDF
WMHOS | | 318 | 319 | 7 7 | 438 | 744 | 4 II
0 4 | 4 50 50 | 389 | 445 | 4 [c | 914 | 912 | TC | 787 | 771 | 712 | 764 | | 606 | 755 | 756 | 667 | ; | 750 | 130 | 064 | 441 | 000 | 517 | 587 | 575 | 472 | 4 3 5 | 436 | 44 | 000 | P15 | | ELFV. OF I AND SURFACE DATUM (FT. ABROVE | | ; | ; ; | ; ; | 1302.30 | 1302,30 | 302.3 | 1200.00 | 200.0 | ; | | 1196.00 | 1 1 | 1 | ! | ! | ! | : : | | 1 | : : | ! ! | 1179.00 | ; | 1165.00 | 1157.00 | ; | ! | ; | : | ! | ! | 1 1 | ļ | ; | 1 6 | 00 0511 | 1125.00 | | 0F0T4
0F
WFLL•
TOTAL
(FRET) | | 94] | (a 6 | 1 40 | 699 | 669 | י ט
ניע | 200 | 280 | 330 | 126 | 124 | 124 | • | 126 | 124 | 124 | 2.4 | • | 126 | 7 7 | 126 | 193 | 134 | 120 | 1510 | ŀ | ! | 1 | ; | 1 | ŀ | 1 1 | ; | : | 1 (| 1 4
1 4 | , .
5. | | DATE
OF
SAMPLE | | 62-06-15 | 62-07-12 | *I-60-29 | 50-05-08 | 55-01-31 | 110110 | 2-08-1 | 3-05-1 | 55-01-00 | 56-05-10 | 57-05-20 | 58-10-23
50-05-63 | 0-60-66 | 59-11-18 | 60-06-07 | 40-11-07 | 61-06-08 | | 62-06-05 | | | | 16-09-08 | A3-05-18 | 78-05-17 | 58-10-23 | 81-11-65 | 10-90-04 | 40-11-07 | • | <u> </u> | 62-06-05 | , | 63-05-31 | - (| ֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓ | -1 | | 650-
LCG1C
UNIT | THANT | VaeJISI | 1216947 | ここ | 5 | 12269RD | 1226020 | 1224VPM | 122WVPW | ł | ; | ; | 1 | !
! | ; | ; | ; | : : | | : | : : | ; ; | 121CAPV | 1 | _ | 1229999 | ; | ! | ! | : | ; | ; | ; ; | l
l | ; | 1 0 | MONACCI | 1126LCV | | SFQ. | | 01 | | | 01 | | | 0] | •
: | 0 | 0 | | | | | | | | | | | | 01 | ű | 0.1 | 05 | 0.1 | | | | | | | | | 7 | 10 | 0.1 | | | | 14 | | | 36 | | | 42 | ! | 27 | 5 | | | | | | | | | | | | 56 | 53 | ٥, | J. | 13 | | | | | | | | | | J | 35 | | LONG-
I-
TUBE | | 03 | | | 55 | | | 6 | | 51 | 4 | | | | | | | | | | | | 4 | 5 | 43 | 4 0 | 34 | | | | | | | | | , | Ç | 32 | | L0
1 | | 119 | | | 119 | | | 119 | : | 119 | 110 | | | | | | | | | | | | 119 | 119 | 119 | 119 | 119 | | | | | | | | | | 7 7 | 110 | | | | 20 | | | 30 | | | 90 | , | 57 | 23 | | | | | | | | | | | | 54 | 50 | Œ | 9.0 | 30 | | | | | | | | | ć | <u>}</u> | 18 | | LAT-
I-
TUDE | | 55 | | | 00 | | | 0.5 | | 5 | 0.5 | | | | | | | | | | | | 4 | 70 | 40 | 03 | 0 | | | | | | | | | 6 | - | 0 0 | | → | | 4 6 | | | 41 | | | 47 | ; | 47 | 47 | | | | | | | | | | | | 47 | 4.7 | 47 | 4.1 | 47 | | | | | | | | | ! | 1 | 47 | | Incal
Incal
I-
Fie | | 17/30E-33K02 | | | 18/235-36401 | | | 18/245-04302 | 1 | 18/245-06401 | 18/255-04401 | | | | | | | | | | | | 19/255-05501 | 18/255-08901 | 19/25/-08001 | 19/255-1550161 | 18/268-28501 | | | | | | | | | | 14/205-32/11 | 19/265-34401 | Table 2. -- Continued | POTAS-
STUM,
DIS-
SOLVED
(MG/L
AS K) | | 10 | 11 | 9.6 | N 0 | 200 | 2.0 | 2.3 | 6.0 | 6.3 | 7.0 | 7.0 | 3.0 | 7.0 | 9 4 | 0 | 5.0 | C • 4 | ٠٠, | . v | ; |
 | 2.5 | - C | 11 | 17 | 3.8 | 16 | 17 | 4 | 9 | E & | د ر | 71 | |--|-------|---------------|------------|--------------|----------------------|----------|----------------------|--------------|--------------|-------------|-------------|----------|----------|------------|-------------|-------------|----------|----------|----------|--------------|--------------|--------------|----------------|--------------|--------------|----------|----------|----------|----------------------|----------|----------|--------------|----------|--------------| | SONIUM
AD-
SORP-
TION
RATIO | | 4 4 | 4 n | 1.0 | m• | 4 | ភ • | e. | 4. | 4. | 4 n. | ທູ | 'n | | ຕໍ 4 | • | .7 | 9 1 | • | , r | ; | 1.1 | | | 7 | ۲. | ۲. | ۲. | . 8. | a | : ; | 6. | ٠, | F • 7 | | PERCENT | | 75 | 75 | 27 | 0 1 | 20 | 14 | 0 | c o | oc (| 5 0 | 11 | | 11 | 13 | • | 17 | 14 | 16 | 14 | 1 | 25 | 7. | 17 | 17 | 11 | 17 | 19 | 61 | 6 | 7. | 22 | 25 | 0 ک | | SONTUM.
DIS-
SOLVED
(MF/L
AS NA) | | n n
oo | n n
eco | 30 | 9.6 | 13 | 15 | 6.6 | 19 | 18 | 22 | 2.1 | 25 | . 6 | 22
7. | . 1 | 92 | \$ 7 | * ; | <u>.</u> 4 | | 4 | | | 25 | 25 | 25 | e c | ۳ e | ć | 7 4 | 30 | E . | đ
E | | MASNE-
SIUM.
DIS-
SOLVED
(#9/L
AS MG) | | 1.7 | | | 2,5
2,5 | 31 | 23
18 | 35 | 4.7 | or∖t
⊲r∙ | 4 4
Մ ՈՆ | 43 | 96 | 4.5
7.4 | 4 4
0 c | j | 35 | 99 | 4°. | 23 | 153 | 32 | 7.00 | e c | 2 | z, | 7, | 22 | ر
د
د | |) i | 90 | 7.0 | er
F | | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | | ec ec
ຕິດເ | α α
π π | 32 | 39 | 50 | 41
34 | 39 | 98 | 187 | 90 | 42 | 86 | 57 | 6. 8
8 8 | 9 | 54 | 90 | 25 | r ec
o m | 539 | 7.2 | 0 4 |) t | . 13
. 10 | 4 1 | 36 | 6 | 3
3
3 | 0 | 100 | 45 | 4 i | ų | | HARD-
NESS.
NONCAP-
RONATE
(MG/L
CACO3) | GRAMT | 6 | o c | . 0 | 7.0 | 55 | 37 | 79 | 274 | 255 | 229 | 218 | 186 | 221 | 182 | | 9.0 | 101 | 91 | 90 | 744 | 85 | e c | c | c | 0 | c | c (| c | • | = | 60 | ~ ; | ę. | | HADD-
NFSS
(MG/L
AS
CACO3) | | 28
29 | % % | 170 | 200 | 253 | 197
159 | 200 | 438 | 415 | 435 | 374 | 375 | 328 | 322 | r
0
0 | 579 | 306 | C 10 | 190 | 1225 | 315 | נית
נית | 220 | 211 | 205 | 504 | 198 | 148 | 173 | | 020 | 226 | ב | | COLI-
FORM.
FFCAL.
0.7
UM-ME
(COLS. | | : : | ; ; | ; | 1 1 | ; | 1 1 | : | ; | ; | : : | ; | 1 | ! | 1 1 | | i | ¦ | 1 | 1 1 | ; | ! | : : | 1 | ; | ; | 1 | ! | : : | ! | ; ; | • | ! ? | 7, | | nate
OF
Sample | | 62-06-15 | 62-08-14 | 50-05-08 | 55-01-31
60-10-18 | A2-08-19 | 82-08-16
83-05-16 | 55-01-00 | 56-05-10 | 57-05-23 | 59-05-07 | 59-11-18 | 20-90-09 | 60-11-07 | 61-06-08 | | 90-09-09 | 62-10-31 | 63-05-31 | 70-10-03 | 16-09-08 | 83-05-13 | | 59-11-18 | 40-06-07 | 60-11-07 | 61-06-08 | 61-10-12 | 62-06-05
62-10-31 | 13-05-21 | 63-10-10 | 82-08-17 | 93-05-20 | 27-C1-5 % | | LOCAL
INENT-
I-
FIFR | | 17/30F-33K02 | | 18/235-36401 | | | 187246-04-02 | 18/245-06401 | 18/255-04401 | | | | | | | | | | | 18/25F-05501 | 18/25F-08901 | 19/25E-08C01 | 18/245-2850111 | 10-03-5.37.1 | | | | | | | | 18/246-32001 | | 14/26F-34461 | Table 2.--Continued | FLUG-
PIDE,
DIS-
SOLVED
(MG/L
AS F) | | 11
5
5 | ים גי וע וע וע | ¢!!!! | 11111 | 1111% | 18.0111 | ::::: | 11444 | |---|-------|---|--|--|--|--|--|--|--| | CHLO-
RIDE.
DIS-
SOLVED
(WG/L
AS CL) | | 6.5
7.7
13.2 | 88 4 8 4
8 4 8 4 8 4 | 35
11
15
15
15 | 1122111 | 8.5
7.4
7.4
16
13 | 417
111
0.00
6.00 | ቋ ወ ወ ዑ ዑ
« ቦ ෑ ሆ ሪ ሪ | 11
9.2
18
21
120 | | SULFATE
DIS-
SOLVED
(M3/L
AS SO4) | | E E E E E E E E E E E E E E E E E E E | 8 8 4 8 4
8 8 6 8 8 8 | 35
230
220
220 | 200
180
220
180 | 140
150
170
170
50 | 811
110
75
1.4
4.0
3.0 | 13
3.0
7.0
7.0
8 | 4 % 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | | 11111 | 198
150
134 | !!!!! | 11111 | 11111 | 1 1111 | 11111 | 217 224 190 | | ALKA-
LINITY
FIELD
(45/L
AS
CACO3) | | 139
139
139
140 | 121 139 | 121
154
150
221
191 | 156
189
107
140 | 189
205
189
172
130 | 130
429
252
335 | 320
303
265
246 | 230
221 | | CAR-
RONATE
IT-FLD
(MG/L
AS
CO3) | | 11111 | 11000 | 11111 | 11111 | 11111 | ;°!!!! | 11111 | 11000 | | CAR-
HONATE
FET-FLN
(MS/L
AS CO3) | GRANT | 4 M W 4 C | 10111 | 00101 | 0
10
10 | cc00c | 010000 | 0000 | 00 | | ATCAR-
HONATE
JT-FLD
(MG/L
AS
HCO3) | | 11111 | 256
196
166 | 11111 | 11111 | 11111 | 1 1111 | 11111 | 27.0
24.0
44.0 | | AICAR-
AONATE
FET-FLD
(MG/L
AS
HCOR) | | 152
154
156
152 | 146 | 148
200
195
270
190 | 190
0F2
0111
071
045 | 230
230
230
210 | 596
150
523
320
410 | 390
370
350
300 | 046 | | JATE
OF
SAMPLF | | 62-00-15
62-01-12
52-08-14
62-09-04
50-108-09 | 55-01-31
60-10-18
92-08-19
82-08-16
83-05-16 | 55.01.00
56.05.10
57.05.20
58.10.23
58.10.23 | 59-11-18
69-06-07
50-11-07
61-06-08
51-19-12 | 62-10-31
62-11-31
63-05-31
63-10-10
70-10-03 | 16-09-08
83-05-18
79-02-17
58-10-23
59-11-14 | 50-11-07
61-06-08
51-11-12
62-06-05
62-10-31 | 63-05-31
63-10-10
82-04-17
83-05-20
83-05-18 | | LOCAL
ThenT-
I-
FJFP | | 17/3nF-33KD2
18/23F-36HD1 | 19/24E-04002 | 19/24F-06H01
19/25E-04A01 | | 18/255-05501 | 19725E-08301
18725E-08C01
19725F-15E0101
19726E-28F01 | | 19/24E-32C01
19/24F-34KNI
 | | Ë | Table 2 | | Continued | | | | | |--|---|---|--|---|--|---|--|--| | LOCAL
INENT-
I-
FIFR | DATE
OF
SAMPLF | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS.
PESIDUE
AT 180
DEG. C
NIS-
SOLVED | SOLIDS.
SUM OF
CONSTI-
TUENTS.
DIS-
SOLVEN
(MG/L) | NTTRO-
GEN•
MITRATE
TOTAL
(MG/L
AS NO3) | NITRO-
GEN+
NO2+NO3
TOTAL
(MG/L | NITRO-
GEN•
NO2+NO3
NIS-
SOLVE)
(MG/L | | | | | TNAFA | - | | | | | | | 20x6-306-71 | 62-06-15
62-07-12
62-08-14
52-03-04 | 77
77
76 | 263
263
263
263 | 266
266
266
266 | 000 | 1111 | 1111 | | | | 55-10-131
50-10-131
50-10-131
82-103-10
83-103-16 | | 314 | 314
252
335
291
264 | . 111 | 1 11111 | 44.0 | | | 19/245-06401
18/255-04401 | 55-01-00
55-05-10
57-05-20
58-10-23
59-05-07 | ::::: | 11111 | 252 | 12
70
74
74 | 11111 | ::::: | | | | 59-11-18
60-05-07
60-11-07
51-05-08
61-10-12 | 11111 | 11111 | 11111 | 36
39
39 | 11111 | ::::: | | | 19/2505F01 | 62-06-05
62-10-31
63-05-31
63-10-10
70-10-03 | 1111 | 307 | 273 | 23 | 11111 | ::::: | | | 19/255-08801
18/255-08091
18/255-1550101
18/265-28F91 | 15-09-08
83-05-18
78-02-17
58-10-23
59-11-18 | 1144
444 | 251 | 1220
454
262
262 | 011000 | 119111 | m | | | | 0-11-0
1-05-0
1-10-1
2-05-0
2-10-3 | | | 11111 1 | 2.5
.00
.00
3.1
1.8 | | 11111 1 | | | 18/26=-32C01
18/26E-34K01 | 63-10-10
63-10-10
83-05-17
83-05-18 | 441 | | 3 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | | 3.5
3.6
1.9 | | | _ | |-----------| | ਲ | | ŏ | | | | \supset | | ng | | - | | ٠, | | يز | | ب | | Con | | Ξ | | U | | 6) | | · | | | | 1 | | ٠. | | • | | 2 | | •• | | | | a) | | ╼. | | ~ | | Ω | | | | | | ø | | rab | | LOCAL
IDEAT—
I —
FIFR | DATE
OF
SAMPLE | 120N. TOTAL RFCOV- ERLBLE (197/L AS FF) | IRON.
DIS-
SOLVED
(UG/L
AS FE) | MANGA-
NESE.
TOTAL
PECOV-
FPABLF
(UG/L
AS MN) | MANGA-
NESE.
DIS-
SOLVED
(UG/L
AS 4N) | |--|--|---|--|---|--| | | GRANT | | | | | | 17/30E-33K02 | 62-04-15
62-97-12
52-08-14 | 4 V W | ;;; | 111 | 111 | | 18/23E-36401 | 62-00-94
50-05-08 | 10 | 11 | ! ! | ! ! | | 19/246-04002 | 55-01-31
60-10-18
92-09-19
82-09-16
93-05-16 | 12111 | 11000 | 11111 | a = 0 | | 18/24F-06H01
19/25E-04A01 | 55-01-00
56-05-10
57-05-20
58-10-23 | 11111 | | 11111 | 11111 | | 18/256-05F0] | 59-11-13
60-05-07
50-11-07
51-06-08
51-10-12
52-06-05
62-11-31
63-05-13
63-05-13
63-10-13 | 11111 1114 | 11111 11111 | 11111 11118 | 11111 11111 | | 18/25E-09901
18/25E-08C01
14/25E-15E0101
18/26E-29F01 | 15-00-08
83-05-18
78-02-17
58-10-23
59-11-18 | 110111 | 101111 | 1100111 | 1-1111 | | | -11-0
-94-0
-10-1
-06-0
-10-3 | 11111 | 11111 | 11111 | 11111 | | 18/26E-32C01
18/26E-74K01 | 53-10-31
53-10-10
82-08-17
83-05-20 | 11111 | 11000 | !!!!! | 11022 | Table 2. -- Continued | TFMPE3-
ATURE
(DEG C) | | 15.
22.6
8.15 | . ; | 11111 | :: | : : | 15.5 | :: | : : | 16.0 | 14.7 | 15.5 | 14.9 | 14.4 | 15.5 | 14.5 | 13.0 | |---|-------|--|--------------|--|----------------------|----------------------|-----------|----------------------|----------|---|--------------|----------------------------------|----------------------------------|--------------|-------------------------------|--|--| | SH
(STAND-
ARD)
UNITS) | | να φ

 αι 4 | 7.0 | 8 4 4 8 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 | 8.1 | 8.1 | 8.2 | 7.7 | 8 Y | 7.9 | 7.7 | 7.8 | 7.7 | 7.8 | 7.8 | r | 10.77 | | SPF-
CIFIC
CON-
DUCT-
ANGE | | 612
432
440 | 147 | 508
508
513
529 | 520
548 | 546
518 | 7.40
0 | 486
512 | 4 9 B | 460 | 398 | 380
437
745 | 376
1100 | 514 | 610 | 5/5 | ድ ቤ ተ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ | | ELFV.
OF IAND
SUBFACE
DATUM
(FT.
ARNVE | | 1142.00
1110.00 | ! | 1133,00 | : : | : : | ; | :: | : : | 1270,00 | 1250.00 | 1170.00 | 1206.30 | | 1276.00 | 1256.00 | 1225.00
1157.00
1226.00 | | DE2TH
OF
¥FLL•
TOTAL
(FFET) | | 18
124
801
801 | 26A | 218
218
218
218 | 218
218 | 218
218 | 218 | 218
218 | 219 | 8. P. | 270 | 342 | 185
185
185 | 135 | | 111
502
502 | 502
111
710
100 | | DATE
OF
SAMPLE | | 16-10-08
66-10-18
82-08-12
83-05-17 | 47-07-29 | 52-02-00
56-05-10
57-05-20
58-10-23
59-05-07 | 59-11-18
60-06-07 | 60-11-07
61-06-08 | 61-10-12 | 62-06-05
62-10-31 | 63-05-31 | A3-05-18 | A2-08-13 | 52-02-00
60-10-19
61-05-03 | 53-11-09
P2-08-12
93-03-18 | 70-12-03 | 16-09-15
R2-08-15 | 83-33-16
16-08-31
50-05-00 | 61-05-04
61-05-04
50-05-01
42-04-23
F2-0d-17 | | 650-
LOAIC
UNIT | GRANT | 122Caby | ; | 11111 | :: | : : | : | !! | : ; | 1226797 | 122×NPM | 121C4RV
121C4RV
121C4RV | 1224NPW
1224NPW
1224NPW | : | 1224VP4 | 22.4.1.1.2.2.4.1.1.2.2.4.1.1.2.2.2.2.2.2 |

122C3EV | | SFQ.
NO. | | 0100 | 10 | 01 | | | | | | 01 | 0.1 | 19 | 0.1 | υI | 100 | 01 | 1000 | | LONS-
1-
TUNE | | 119 25 40
110 15 19
119 15 19 | 119 15 49 | 119 15 22 | | | | | | 119 06 39 | 119 07 52 | 119 12 19 | 119 02 42 | 119 52 33 | 110 54 13
119 54 08 | 119 51 17 | 110 51 12
119 43 44
119 33 34
119 42 12 | | 1. A.T | | 47 04 35
47 05 13
47 01 20 | 47 00 04 | 47 00 46 | | | | | | 47 65 02 | 47 65 10 | 47 72 37 | 47 62 34 | 47 09 28 | 47 07 48
47 07 22 | 47 69 13 | 47 f7 55
47 06 19
47 09 44
47 99 39 | | LOCAL
TOENT-
T-
FTED | | 19/275-04401
10/295-03401
18/295-26501 | 18/29E-34201 | 18/245-36901 | | | | | | 18/20F-01A0151 | 18/205-02601 | 18/205-17001 | 18/395-16501 | 10/23F-12591 | 19/23F-22001S
19/27F-22401 | 19/24E-07.101 | 19/24F-19A7]
19/24F-28W01
19/24F-02W01
19/24F-08A01 | Table 2.--Continued | POTAS-
SIUM.
DIS-
SOLVED
(MG/L | | 3.3 | 4 W 4 V D | 0444w 11.00.0 | ι τυ
συ | 0. E. | | 14410 | 6 | |--|-------|--|--|--|----------------|--|--|---|---| | SONTUM
AD-
SORD-
TION
RATIO | | 1889 | 1.88.87. | ,,,,,, | 1.9 | 8 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 1.0 | 16615 | 4444 | | PFPCFNT
SOOTUM | | 113
88
44
113 | 20
21
20
20
20 | 119
118
114
116
116 | 43 | 65
67
40
18 | 37
17
18
13 | 7 7 32 | 12
17
14
23 | | SONTUM.
DIST.
SOLVED
(MG/L | | 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 84544
84544 | 2222 2222
2222 2222
12222 2222 | 47 | 7 4 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 33
44
16 | 10 10 32 | 11
21
20
20 | | WASNE-
SIUM.
DIS-
SOLVED
(W3/L | | 36 | 44748 | 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 15 | 0
110
14
14
36
36 | 16
55
39 | 118
38
38
18 | 7 7 0 7 E | | CALCIUM
DIS-
SOLVFD
(MG/L
AS CA) | | 47
54
4.1
4.2 | 38
38
41
43 | 14444 4444
Иш 4 ш 4 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — | 52 | 11
11
18
53
63 | 22
89
87
37 | 34
55
34
74
74 | 31
29
24
28 | | HADD-
VESS.
NONCAD-
RONATE
(MG/L
CACO?) | TWARA | CMCCC | 7.6
6.6
6.6
7.7
7.7
7.7 | 187
94
94
94
96
96
96
96
96
96 | C | 0
0
124
175 | 300
320
72 | 2000 | 44 4 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | HAPD-
NFSS
(WG/L
AS
CACO3) | | 224
283
17
18
219 | 194
194
214
201
210 | 212
210
210
223
225
215
215
216 | 128 | 66
59
103
272
376 | 121
450
460
220 | 159
294
289
175
142 | 180
224
151
125
144 | | COLITY FORM. FFCA. (IM-MT) (COLS./ | | 11111 | !!!!! | 11111 1111 | ; | 17111 | !! 7! | 11711 | 11111 | | DATE
OF
SAMPLE | | 14-10-08
40-10-18
82-08-12
83-05-17
47-07-29 | 52-02-00
56-05-10
57-05-20
58-10-23
59-05-07 | 59-11-16
60-06-07
60-11-07
61-06-08
61-10-12
62-06-05
63-06-05
63-06-05 | HI-90-ES | 82-03-17
52-52-00
50-10-19
61-05-03 | 53-11-00
82-08-12
83-03-18
70-12-03 | 14-004-15
93-03-15
15-04-31
50-05-00 | 60-10-13-51-04-53-04-53-82-04-63-83-17-17-17-17-17-17-17-17-17-17-17-17-17- | | LOCAL
IDENT-
IT-
FIED | |
19/27F-04-01
18/29F-034n1
19/28F-26F01
18/28F-34-01 | 19/20F-36501 | | 18/29F-0140101 | 18/29F-62&N1
18/29F-17201 | 18/30F-16501
19/23F-12501 | 19/23F-22nn1S
19/23F-22nn1
19/24F-07Jn1 | 19/24F-19401
19/24F-28431
19/25F-02401
19/25F-08401 | Table 2.--Continued | FLUO-
RIDE.
DIS-
SOLVED
(MG/L
AS F) | ‡ in | 1.8 | ¢!!!!! | 11111 | 11114 | οναςυ. | | mm w | 00444 | |---|-------------------------------|----------------------------------|--|--|--|--|--|--|--| | CHLO-
RIDE.
DIS-
SOLVED
(MG/L
AS CL) | 10 | 18
16
14 | 16
13
17
26 | 29
31
29
29 | 20
20
30
14
14 | 7.7
12
18
38
52 | 18
93
100
36 | 14
16
9.0
6.8 | 117
35
6.9
22.4 | | SULFATE
DIS-
SOLVED
(M9/L
AS SO4) | 9.1
5. | 37
35
14 | 8 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 444 ሲሆ
ፈພልቪሊ | 1 1 1 1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 | ይ በ | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 11
44
67
75 | 29
54
15
10
14 | | ALKA-
LINITY
LAR
(M7/L
AS
CACO3) | ; ; | 159
156 | ::::: | | 155 | 154 142 | 150 | 234 | 1111 | | ALKA-
LINITY
FIELN
(MS/L
AS
CACO3) | 294
190 | 267 | 169
148
148
139 | 131
131
123
131
131 | 123
123
131
115 | 140
148
131 | 147 | 153 | 144
158
145
139 | | CAR-
RONATE
IT-FLO
(MG/L
AS
CO3) | 11 | ••! | 11111 | 11111 | e | | 00 | 10011 | 11110 | | CAR-
HONATE
FEI-FLD
(MG/L
AS CO3) | 72447
0 | 114 | 0 0 | 0000 | 00 0 | 11000 | 0110 | w | 00001 | | BICAR-
RONATE
IT-FLD
(MG/L
AS
HCO3) | | 192 | 11111 | 11111 | 130 | 190 | 187 | 291
284 | 11. | | AICA2-
HONATE
FET-FLD
(MG/L
AS
HCO3) | 359 | 762 | 206
191
191
170
150 | 150
150
150
150
160 | 150
150
140 | 171
180
150 | 179 | 45

235
221 | 175
193
177
170 | | 0ATE
OF
SAWPLE | 15-10-08
50-10-18 | 82-08-12
83-05-17
47-07-29 | 52-02-00
56-05-10
57-05-20
58-10-23
59-05-07 | 59-11-18
60-06-07
60-11-07
61-06-08
61-10-12 | 62-10-31
62-10-31
63-05-31
63-10-10
83-05-18 | 82-08-13
83-03-17
52-02-00
50-10-19
61-05-03 | 53-11-00
82-08-12
83-03-18
70-12-03 | 16-09-16
82-08-16
93-03-16
16-08-31
50-05-00 | 60-10-18
61-05-04
50-05-01
42-04-23
42-08-17 | | 10Cal
10ENT-
1-
FIFR | 19/27F-04-201
19/29E-03401 | 18/28E-26F01
19/28E-34-01 | 14/24E-36001 | | 18/295-0140101 |]¤/29F-02An]
]A/29F-1720] | 18/30F-16>01
19/23E-12901 | 19/23F-22D01S
19/23E-22401
19/24E-07J01 | 19/24F-19401
19/24F-28N01
19/25F-02W01
19/25F-0RA01 | Table 2. -- Continued | LOCAL
IDENT-
I-
FIFR | DATF
OF
SAMPLE | SILICA.
DIS-
SOLVED
(MS/L
AS
SIO?) | SOLIDS. PESIDUE AT 180 DF5. C ATS- SOLVED (MG/L) | SOLIDS.
SUM OF
CONSTI-
TUENTS.
DIS-
SOLVEN
(MG/L) | NITRO-
GEN•
VITRATE
TOTAL
(MG/L
AS NO3) | NITRO-
GFN+
NO2+403
TOTAL
(MS/L | N1TRO-
GEN+
NO2+NO3
91S-
SOLVED
(MG/L
AS N) | | |-------------------------------|----------------------|---|--|---|--|---|---|--| | | | GRANI | - | | | | | | | | | | | | | | | | | 18/275-04501 | 15-10-08 | 04 | 355 | ! | 1.0 | ; | ; | | | 18/28=-03401 | 60-10-18 | 1,4 | 455 | 376 | 5 | ; | : | | | 19/28=-26F01 | 82-04-12 | i, | ; | 309 | : | ! | 54. | | | | 43-05-17 | ŋ.
4 | ; | 304 | | ! | .21 | | | 19/285-34001 | 47-07-29 | ; | ; | 354 | 11 | : | : | | | 10095-386781 | 50-00-65 | ; | 360 | ļ | 47 | ; | ! | | | | 55-05-10 | ; |) | ; | . " | ł | ; | | | | 57-05-20 | ; | ; | ; | , a | ; | ; | | | | 54-10-23 | ; | ; | ; | , ŗ. | ; | ; | | | | 50-05-07 | ; | ; | ; | 1.7 | : | ; | | | | 01-11-03 | ļ | ł | | Ç | | ļ | | | | 77-11-26 | : : | ! ! | 1 1 | • | 1 | 1 1 | | | | 60-10-07 | ; ; |) | ; ; | 6 | 1 1 | | | | | 00-40-7 | ! ! | ! ! | | e (* | : : | : ! | | | | 61-09-10 | , |) | 1 | η (| 1 | | | | | 211-16 | ! | 1 | ; | y | • | : | | | | 42-06-05 | ; | ; | ; | 7.2 | ; | : | | | | 62-10-31 | ; | ; | ; | | 1 | 1 | | | | 43-05-31 | ; | ; | ; | . 6. | ; | ; | | | | 63-10-10 | , | 1 | ; | : 60
(F) | 1 | ; | | | 4/29E-01A0101 | 83-05-18 | 45 | ; | 162 | ; | : | 3.1 | | | 1000 | 6 | C | , | 910 | i | | - | | | 10421-162241 | 51-LC-5E | ר יו
ר כי | ; ; | 0 00 | ; ; |) | 1 6 | | | 14/295-17801 | 22-02-00 | ; | 274 | } | 9.5 | 1 | : | | | | 60-10-10 | er i | 453 | 369 | 7.1 | ; | ; | | | | 51-02-03 | 3 | 429 | 4 | £, | ; | ; | | | 19/305-16001 | 53-11-00 | ; | 299 | 1 | •20 | ; | ; | | | | 82-08-15 | 54 | ; | 613 | ! | ! | 56 | | | | 93-03-1A | 5.4 | ! | 635 | ! | ; | 19 | | | 19/23=-12501 | 70-12-03 | 43 | 336 | 311 | 4.9 | ; | ; | | | 9/23E-225015 | 15-09-16 | 47 | 232 | ; | 3.0 | 1 | ; | | | 197235-22401 | 82-03-16 | 1.
4. | 1 | 363 | ; | ; | 6.5 | | | ;
; | A3-03-16 | r
E | ; | 358 | ; | ; | 4.4 | | | 19/245-07301 | 15-08-31 | 42 | 283 | 1 | .00 | 1 | ; | | | | 20-02-00 | 4 4 | 556 | 270 | .10 | ; | ; | | | | 60-10-18 | uc
s | 242 | 751 | [7 | ; | ł | | | 19/245-19401 | 61-05-04 | 4.7 | 347 | 328 | 7.0 | ; | ; | | | 19/24E-24N01 | 50-05-01 | r.
r. | 234 | 228 | 9.7 | ; | ; | | | 19/255-02401 | 62-40-64 | 55 | 215 | 211 | 6.7 | ; | : | | | 19/25=-DAAN1 | 82-04-17 | ናሪ | ; | 275 | ! | : | 4.5 | | | | | | | | | | | | | ~ | |------------------| | .O | | ed | | inn | | ب | | c | | | | | | ų | | - | | <u>, in</u> | | 0 | | Con | | $\mathbf{\circ}$ | | | | i | | • | | • | | ~ | | 11 | | | | Ø | | w | | ~ | | <u>`</u> | | ¥ | | Tabl | | Č | | | | | Table 2. | continued | inned | | | |--------------------------------|----------------------|---------------------------------|--|---|--| | LOCAL
10547-
1 I F F F F | DATE
OF
SAMPLE | IPON+ TOTAL RECOV- ERABLE (UG/L | IRON.
DIS-
SOLVED
(UG/L
AS FE) | MANGA-
NESE.
TOTAL
PECOV-
FDABLF
(UC/L
AS MN) | MANGA-
NESE+
DIS-
SOLVED
(UG/L
AS MN) | | | Tinaca | - | | | | | 9/27E-04P0 | 0-vl-9 | : | : | i | ; | | 19/285-03401 | 0-10-1 | 40 | ł | 1 | ! | | 9/28E-26F0 | 82-08-12 | ; ; | 6 7 | : : | v | | 18/28E-34001 | 2-20-2 | 1 | - ! | : | ° ¦ | | 18/29E-36001 | 2-05-0 | ; | ; | : | ł | | | 6-05-1 | ! | ; | ; | ; | | | 7-05- | : | : | ; | : | | | 59-05-07 | : : | ! ! | : : | 1 1 | | | 9-11-1 | ; | ; | ; | ; | | | 0-04-0 | ! | 1 | ; | ! | | | 40-11-07 | : | ! | ! | ! | | | 1-05-0 | ! | ! | ; | ; | | | 1-10-1 | : | ! | ! | 1 | | | 0-90-2 | ŀ | ŧ | 1 | ; | | | 2-10-3 | ; | ; | ; | ; | | | 'n | ; | ! | ! | 1 | | | 3-10-1 | : | ; ; | ł | : : | | 187295-0140101 | 1-61-6 | !
! | 10 | : | = | | 19/295-02401 | 2-08-1 | ; | \$ | : | ~ | | | 3-03-1 | ; | 0 | ; | 4 | | 18/295-17P31 | 2-05-0 | 1 0 | ! | ! | ! | | | 51-01-13
51-02-03 | 2005 | : : | ! ! | : : | | 18/3015001 | 3-11- | ; | ! | : | 1 | | | 2-0B- | ! ! | £ 43 | ! | - ; | | 19/23E-12R01 | 70-12-03 | 0 4 | <u>.</u> ; | <20 | 7 1 | | 36-22001 | 6-00-9 | ; | ŧ | ; | ł | | 19/235-22401 | 2-08-1 | ; | ę | ł | • | | | 3-03-1 | 1 | m | ! | ₹ | | 19/24E-07J01 | 16-08-31 | 70 | !! | : : | 1 1 | | | 0-10-1 | 460 | ; | ; | 1 | | 9/24E-1940 | 1-05-0 | 10 | : | ł | 1 | | 7/64E-24NIO | 0-40-0 | 300 | | : | | | 19/25E-08A01 | 92-08-17 | | ₩. | : : | ** | | | | | | | | | ซ | |---------| | led | | Þ | | Ind | | ~ | | Cont | | F | | 8 | | U | | | | ı | | - | | ! | | 2 | | 2 | | e 2 | | ĕ | | 것 | | Table 2 | | | | | Table | 7 | Continued | ned | | | | | | |---------------------------------|----------------------|----------------------|--------|-----------------------|----------------------------------|---|--|---|--------------------------------|-----------------------------|--| | 1 OCAL
IDENT-
I -
FIFO | LAT-
1-
TUNE | L nn3-
I-
Tune | 0 N | 650-
L0610
UNIT | DATE
OF
SAMPLE | OFPTH
OF
WFLL.
TOTAL
(FEET) | ELFV. OF LAND SURFACE DATUM (FT. AROVE | SPF-
CIFIC
CON-
DUCT-
ANGF | SH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
(DEG C) | | | | | | | Ti. 485 | | | | | | | | | 19/255-10001 | 47 00 43 | 110 33 40 | 01 | | 10-10-05 | 160 | 1155.00 | 1260 | 1 . | 1 4 7 | | | 19/24E-01201 | 47 09 48 | 119 29 38 | 10 | ::: | 56-09-18
56-09-18
60-10-18 | 4 4 4
0 4 0
0 0 | 1257.00 | 314
386 | 4.0 | 19.5 | | | 19/26F-04:001
19/24F-06401 | 47 09 55
47 10 37 | 119 33 42 | 100 | 1 1 2 | 55-12-00
56-05-03 | 135 | 11 20 | 666
666
666
666
666
666
666
666
666
66 | 4.4 | 1 7 7 | | | 19/2/F-36501
19/2/F-17L01 | 7 05 | 19 30 2
19 27 3 | 010 | | R2-08-13
16-09-12 | 515
211 | 1230.00 | 114 | • • 1 | 20.1 | | | 19/275-21001 | 5 70 | 25 2 | 16 | ; ; | ~ ~ | 70 | 1 1 | : : | 1 1 | ; ; | | | 19727F-24402 | 47 02 35 | 119 21 46 | 10 | 1126LCV | R3-03-16 | 96 | 1065.00 | 950 | 7.2 | 13.4 | | | 19/275-24401 | ٥ ٢ ٥ | 1 22 b | 0 1 | :: | - ∾ | 27 |
1050.00 | 1010 | 4.4 | : : | | | | | | | ; | 58-10-23 | 73 | ; | 981 | 7.5 | ; | | | | | | | ; | 59-05-07 | 27 | ! | 866 | 7.6 | ; | | | | | | | : : | 59-11-18 | 27 | : : | 9.50
9.85 | 7.6 | : ; | | | | | | | : | 60-11-07 | 27 | ł | 960 | 7.5 | ì | | | | | | | ; | 0-90- | 27 | ł | 926 | 7.7 | 1 9 | | | | | | | ; ; | -10-1 | 7.0 | : : | 913
959 | ٠, ۲ | 13.0 | | | | | | | 11 | 63-05-31 | 15
10 | :: | A92
A73 | 7.5 | :: | | | | ,
, | ć | ; | ; | 3-10-1 | 27 | 1 1 | 0
4
0 | 7.6 | 1 4 | | | 19/2/5-25403 | 47 05 22 | 119 29 11 | 10 | - 10 | 82-08-13 | 460 | 1220.00 | 453 | 7.6 | 19.6 | | | | | | , | 1224NP4 | 3-05-1 | 440 | 1220.00 | 497 | 7.7 | 19.2 | | | 19/28E-01001 | 47 10 25 | 119 15 00 | i
c | ; | 2-01-0 | 57 | ; | ; | 6. | ; | | | 19/295-04001 | 47 09 45 | 119 18 14 | ľ | 7 | 61-11-27 | 10 | ; | 352 | 8.5 | 14.4 | | | | | | | 2 5 | 63-04-10 | ro n | 1 1 | 350 | æ æ | : : | | | | | | | 121C9PV | 65-03-17 | 750 | ; | 175 | 80 | ; | | | | | | | ₹ | 60-50-04 | ſ | : | 316 | T. | ! | | | 19/24F-10501 | 02 00 74 | 119 17 25 | 2.5 | ; ; | 16-10-14 | 76 | : : | 1 4 | 1 6 | : : | | | 197245-15791 | 80 | 19 17 | 01 | ; | 55-08-02 | 606 | 1070.00 | : | 91 | 25.2 | | | 19/285-16302 | 47 07 54 | 119 19 42 | l o | 1 1 | 55-11-29
16-10-17 | 506 | ! ! | 380 | . i | 5:1 | | | | | | | | | | | | | | | Table 2.--Continued | POTAS-
SIUM.
DIS-
SOLVED
(MG/L
AS K) | | 4 | 8.43
5.43 | 2.0 | 6.0 | 6.4 | ; | 1 61 | 22
17 | 25 | 200 | , c | 19 | 19 | 19 | 71 | 18 | 20 | * | 0.0 | ¢ € | H. 6 | 10 | 10 | 10 | 1 | : : | 1.1 | 11 | 1 | |--|--------|-------------|----------------------------------|--------------|-------------|------------------------------|----------------------|--------------|--------------|----------|----------|----------|----------|----------|------------|----------|----------|----------|--------------|--------------|--------------|--------------|----------|----------|------------|--------------|--------------|--------------|----------|--------------| | SODIUM
AD-
SORP-
TION
RATIO | | 1 ° ° | 1.9 | 2.5 | . 0 | 4:1 | ; | | 2.2 | 1.5 | e, ° | 0 0 | | 2.0 | 1.9 | E . | 1.9 | 1.9 | 1.8 | | <u>:</u> : | 2,5 | 2.5 | 2.7 | 7.2 | ; | 9 6 | 4.9 | 13 | : | | PERCENT
SOLTUM | | 1.4 | 26
33
33 | 50. | 31 | 32 | ; | 32 | 35
35 | 27 | 37 | 35 | 3.0 | 34 | 32 | 31 | 33 | 31 | 38 | 62 | e 0 | 26 | 52 | 57 | 55 SB | | 1 1 | 90 | 80 | • | | SODTUM.
DIS-
SOLVED
(MG/L
AS NA) | | 129 | 8 E E | η.
4 9 | 7 7 | 96 | ; | | 87
92 | 43 | e e | , ,
, | 52 | 83 | 18 | | 7.8 | Ą | n
Ç | 32 | 33
7.6 | 94 | 94 | 50 | r r
0 | ; | 7.0 | 9 | 44 | : | | WAGNE-
SIUM.
DIS-
SOLVED
(MS/L
AS MS) | | 18
45 | 76
12
12 | | r & • | 15 | σ
α. _τ | 4.1 | 51 | 45 | 33 | c u | 4 iv | 64 | 4 5 | 4 0 | e e | 47 | 27 | 6 7 | ง ; | 7.2 | 6.9 | 7.1 | 6.6
6.6 | = | c 6 | ٠, ٧ | ٠. | 4.
4. | | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | | 37 | 51
18
33 | 52 | 33 | 30 | 2.
10. i | 52 | 63
57 | 9 | 65 | , c | 33. | 64 | 0.9 | ტ
ტ | 65 | 89 | 28 | 36 | ¥ 1 | 15 | 16 | 16 | 16
16 | 0 7 | 6 | 6.0 | ς.
γ. | ֆ
Մ | | HARD-
NESS.
NONCAR-
RONATE
(MG/L
CACO3) | Tivese | 233 | 70c | 00 | • | 22 | 0 (| - 0 | 00 | G | c c | • | 6 | c | c · | 0 6 | • • | 0 | c · | c , | 2 ! | c | 0 | 0 | o c | 4 |) C | c | c | D | | HAPD-
NESS
(MG/L
AS
CACO3) | | 167 | 63
132 | 9 k | 107 | 137 | 149 | 566 | 326
352 | 335 | 323 | 6 7 6 | 3340 | 324 | 339 | 319 | 323 | 363 | 181 | 169 | 1 1 | 19 | 68 | 69 | 64
7.4 | 148 | 26 | 23 | α, α | £ | | FODM.
FFCAL.
0.7
UM-MT
(COLS./ | | :: | ::: | ; ; | ₹ | 1 1 | ; | ; ₹ | 11 | ; | ; ; | 1 1 | ; | ; | ! | ! ! | 1 | : | ; | • | ! ; | 1 | ; | ! | ! ! | 1 | 1 | 1 | ; | ; | | OATE
OF
SAMPLF | | 16-10-05 | 51-03-03
54-09-18
50-10-18 | 55-12-00 | 83-05-19 | 82-08-13 | 16-10-19 | 93-03-16 | 54-05-10 | 59-10-23 | 59-05-07 | 50-96-04 | 50-11-07 | 61-05-08 | 41-10-12 | 62-06-05 | 63-05-31 | 61-01-10 | 47-04-25 | 82-08-13 | 52-07-00 | 61-11-27 | 63-04-10 | 64-04-09 | 66-03-19 | 16-10-14 | 47-05-14 | 55-0A-02 | 55-11-29 | 11-01-41 | | 1004L
1064T-
1FP | | 9/25F-10401 | 9/24F-01201 | 19/26 -04/01 | 9/24E-25701 | 19/24F-36E01
19/27F-17L01 | 19/27F-21001 | 19/27F-24402 | 19/275-2480] | | | | | | | | | | 19/275-25403 | 19/276-30~01 | 197246-01501 | 19/285-04001 | | | | 10/205-10501 | 14/77F-13701 | 19/295-15301 | | 20091-102/61 | Table 2.--Continued | | | | • | | | ; | : | | : | | |--|--|--|--|---|---|---|---|--|---|--| |
1,0001
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000 | i lanks
je
janks | AICAA-
AONATE
FFT-FLD
(MG/L
AS
HCO3) | SICAR-
BONATE
IT-FLD
(MG/L
AS
HC03) | CAP-
HONATE
FET-FLO
(MG/L
AS CO3) | CAD-
RONATE
IT-FLD
(MG/L
AS
CO3) | LINITY
FIELD
(MS/L
AS
CACO3) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE•
DIS-
SOLVED
(4G/L
AS CL) | FLUO-
PIDE.
DIS-
SOLVED
(MG/L
AS F) | | | | | | Tuves | | | | | | | | 9/25=-10401 | 14-10-05
40-10-18 | 176 | 1 1 1 | ecc | 11 | 162 | 111 | 308 | 5.0 | 16. | | 0/265-01501 | 56-16-18
56-16-18
60-10-18 | 111 208 | 1 1 | | 111 | 121 | 111 | 7 4 6 | 7.8
7.8
5.5 | ្រំក | | 9/245-04001
9/245-06401
9/245-35001
9/245-34501 | 55-12-00
56-05-03
83-05-19
82-05-19
16-08-13 | 179 | 191 | 01110 | 11001 | 147 | 150 | 2 | 16
7.0
9.0
9.0 | | | 9/275-2101
9/275-2801
9/275-24402
9/275-24401 | 14-10-19
16-09-12
83-03-16
54-05-10
57-05-20 | CE CC C | 470 | 66116 | 11611 | 212
337

434
471 | 301 | 25
20
1. E & & & & & & & & & & & & & & & & & & | 9.0
10
23
23 | 11711 | | | 59-15-07
59-15-07
59-11-19
60-06-07 | 25
25
25
25
25
20
20
20
20
20
20
20
20
20
20
20
20
20 | ::::: | c occ c | 11111 | 4 4 2 3 5 4 2 2 7 4 2 2 7 4 2 2 7 4 1 0 1 0 1 4 | ::::: | 0 4 V.E. & | 25
27
26
26 | 11111 | | | 61-04-08
61-16-12
62-10-05
62-10-31
63-05-31 | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | ::::: | cccc | 11111 | 413
410
377
394 | 11111 | F 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 25
25
27
3 | 11111 | | 0/27F-25A03
 0/27F-30M01
 9/29F-11C01 | 63-19-10
42-14-23
82-18-13
73-05-14
52-07-00 | 510
330
100 | 208 | cc | 11001 | 418
271
 | 175 | 7 30
4 30
1 4 1 | 29
11
8.0
10 | 1 1 | | 19/206-04001 | 61-11-27
63-04-10
64-04-10
65-03-17
66-03-00 | 157
159
162
162
162 | ::::: | 00000 | 11111 | 129
130
133
133 | 11111 | 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | ппппп
С444 | 8.6.00 | | 19/24F-10F01
19/24F-13D01
19/24F-15-01
19/24F-16002 | 14-10-14
47-05-15
55-08-02
55-11-24 | 133
210
142
154
548 | 11:11 | 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | ::::: | 137
137
143
143 | 11111 | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 20
12
16
38 | 11141 | Table 2.--Continued | NITPO-
GEN+
NOZ+NO3
DIS-
SOLVED
(MG/L | | :: | ! ! ! | 2.01 | o | 11111 | 11111 | 4 W | 11111 | 11111 | |---|----------|----------------------|----------------------------------|--|--|--|-------------|--|--|--| | NITRO-
GEN+
NOP+NO3
TOTAL
(MG/L
AS N) | | 11 | 111 | 11111 | 11111 | ::::: | 11111 | 11111 | 11111 | 11111 | | NITRO-
REN:
NITRATE
TOTAL
(MG/L
AS NO3) | | 1.0
1.0 | 31
.20
2.6 | 1.9 | 1.0 | 4 0 E 4 E | 0 0 0 0 0 4 | # [[] | .10
.00
.20
.10 | 1.00 | | SOLIDS.
SUM OF
CONSTI-
TUENIS.
DIS-
SOLVEN
(MG/L) | | 800 | 273 | 328
272
225
225
294 | 513 | 11111 | 11111 | 3 9 8 9 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 241
245
254
258
250 | 279 299 | | SOLIDS. RESIDUE AT 180 DFG. C DFG. C ATS- SOLVED (MG/L) | - | 257 | 212
212
271 | 544 | 339
426
111 | 11111 | | 347 | 240
251
250
250 | 350
294
278
886 | | SILIC1.
nIS+
SOLVED
(MG/L
AS
SI172) | GPANT | 4 . | t. 6 | 45
41
43 | 339 | 11111 | 11111 | 69 | 444m4
84m9= | 4.7
8.7
8.8
8.8
8.8 | | 047F
07
SAMPLE | | 15-10-05
50-10-18 | 54-03-13
54-00-18
60-10-18 | 55-12+00
55-05-03
93-05-13
12-09-13 | 15-10-10
15-00-12
83-03-16
55-05-10
57-05-20 | 52-10-23
52-05-07
53-11-18
60-06-07
56-11-07 | | 63-10-10
42-04-25
82-08-13
83-05-16
52-07-00 | 61-11-27
63-04-10
64-04-09
65-03-17
65-03-09 | 15-10-14
47-05-15
55-08-02
55-11-29
15-10-17 | | LOCAL
IOFNT
I FR | | 10/255-10001 | 10/26=-01501 | 19/265-04/01
19/265-06/01
19/265-25/01
19/265-36501
19/275-17L01 | 19/27F-21C01
19/27F-23t01
19/27F-24t12
19/27F-24K01 | | | 19/275-25403
19/275-30×01
19/28F-01601 | 19/285-04001 | 19/28f-10f01
19/28f-13w01
19/29f-15001
19/29f-16P02 | Table 2.--Continued | MANGA-
NESE.
DIS-
SOLVED
(UG/L
AS MN) | | 11 | 11 | 1 | : : | ₽ | 9 | ; | : | : | 2 | : : | } | ; | : | 1 | ; | 1 | 1 | ; | ; | : : | 1 | ; ; | - u | ۱, | | ; ; | ! ! | : : | 1 | ! | : | : : | 1 1 | | |---|--------|--------------|--------------|--------|--------------|------------|------------|------------|------------|--------------|------------|------------|--------|--------|----|--------|--------|--------|--------|--------|--------|----------|------|--------------|-------------|--------------|---|--------------|------|----------------------|----------|--------------|------------|------------|--------------|------------| | MANGA-
NESE.
TOTAL
PECOV-
FDABLE
(UG/L
AS MN) | | 11 | ! ! | : | 1 1 | 1 | ; | ! | ; | ; | 1 | : : | • | ! | ! | ! | ! | ; | ; | ! | : | : : | 1 | | 1 1 | 1 | • | 000 | on v | 067 | 050 | : | 1 | ; | ; ; | | | IRON.
DIS-
SOLVED
(UG/L
AS FE) | | ; ; | i c | : | 1 1 | 6 | 6 3 | ; | : | 1 | 4 | : 1 | ; | ; | 1 | ! | • | ! | ; | ! | ; | ; ; | ; | ; | ? - | ? ; | | ! | ; | : 1 | ! | 1 | 1 7 | 2 | ; ; | ì | | IPON. TOTAL PECOV- ERABLE (UG/L AS FE) | _ | 140 | 213 | î | ១ ! | ; | ; | ; | ; | ; | ! | 1 1 | ; | ! | 1 | 1 | ! | ; | : | ! | ; | ; ; | 1 4 | ; l | | 1 | , | 00 | , | 0 4 | 20 | ! | ; ; | 0 7 | 017 | | | DATE
OF
SAMOLF | CRAHIT | 6-10-0 | 1 1 | 1-01-0 | 55-12-00 | 3-05-1 | 2-08-1 | 6-09-1 | 6-10-1 | 6-09-1 | 3-03-1 | 56-05-10 | 2-10-1 | 8-10-2 | ţ, | 1-11-6 | 0-06-0 | 0-11-0 | 1-05-0 | 1-10-1 | 2-04-0 | 63-05-31 | 3-10 | 2 - 6 - 6 | 1 1 1 0 1 0 | 0-20 | | - (| 77 - | 54-04-04
71-03-17 | 60-60-99 | 16-10-1 | 7-05-1 | 7-04-0 | 15-11-69 | 1 7 | | LOCAL
IDENT-
I-
FIFR | | 19/25E-10A01 | 19/26E-01P01 | | 19/26E-04001 | 9/26E-2500 | 9/26E-36E0 | 9/27E-17L0 | 9/27E-21C0 | 19/275-23401 | 9/27E-24H0 | 9/27E-24KO | | | | | | | | | | | , | 10/275-20403 | 21216 | 19/245-01001 | | 10450-342251 | | | | 19/2AE-10F01 | 9/28:-1340 | 9/295-1500 | 19/205-14002 | これと「しいじしょう | |
TFMPE9-
ATURE
(PEG C) | | :: | : | 15.8 | ů. | | 15.2
14.5 | | 15.0 | 21.6 | 73.1 | 23.3 | 1 | :: | 16.1 | , ה
ה
ה | 21.0 | Ξ. | ; | ; | ; ; | ; | • | ur. c | 13.9 | 5 | : : | ι | 13.61 | |--|-------|----------------------|---------|----------------------|--------------|-----------|----------------------|-----------|----------------------|-----------|--------|-----------|-----------|------------|-----------|---------------|-----------|---------|---------|-----------|----------|-----------|---------|-----------|---|------------|-----------|-----------|-------------| | SH
(STAND-
ARD
UNITS) | | 8.1 | 8.2 | 8.4
4.4 | 8 0 0 | 7.7 | 7:7 | • | • | 000 | • | 800 | 8.1 | 4.6 | | · · · | | • | ; | 1 6 | 7.6 | i i | ; | 4.1 | | 8.1 | | ; ; | . r
. s | | SDF-
CIFTC
COV-
DUGT-
ANGE | | 1 1 | 1 9 | 363 | . ი ი | o o | 326
330 | 572 | 198 | 980 | 360 | 410 | 463 | 551
427 | 580 | ე.
გ. ი | • • | ; | ; | 384 | 564 | ; | ; | 430 | 380 | 458 | 156 | 369 | 514 | | ELFV. OF LAND SUPFACE DATUM (FT. APRIVE | | 1076.00 | 0 , | ٠, ۱ | ر
10 م | 20.02 | 1220.00 | | 1269.00 | 1415.00 | 15.0 | 1442.00 | | 11 | 0 | 1200 00 | • | 1305,00 | 316. | 94.0 | : : | ; | ١ | 222.0 | 1190.00 | • | 1 0 | 1275.00 | ۱
د
د | | DF2TH
0F
WFLL•
TOTAL
(FEET) | | 544 | 948 | 94 R
1000 | 0 | 27 | 273
157 | 352 | 352 | 1100 | 930 | ~ ~ | 35 | 351
351 | 23ª | 23k | 431 | 376 | 454 | J 1 | 57.4 | 450 | 27.8 | S | | (1) | N I | 175 | - 5 | | DATE
OF
SAMPLE | | 55-08-02 | | 59-12-04
71-09-24 | 2-08 | -0.8 | 83-05-26
42-04-25 | | 50-10-19
50-04-00 | 83-05-26 | ٠, | 2-08-1 | 1-04-0 | 53-09-00 | -08- | m < | -080- | 9-UJ-5 | | 2 | 57-09-12 | -5 | -2 | - | 93-03-18 | 2 | 7-11-2 | 50-12-29 | 1-00-1 | | 6=0-
L03IC
UNIT | GRANT | 121C38V
121C38V | ; | 121CARV | 122CARV | 1224NPW | 122¥45k | ; | ! ! | 122CARV | ž
Ž | 122CaRV | | 11 | 122WND14 | ż | 1 | ; | ; | ! | ; ; | ; | ; | 25 | 122 NP 3 | 7 | ! | ; ; | : : | | SFG. | | 01 | 10 | 0.1 | 0.1 | 01 | 01 | 0 1 | 5 | | 10 | 0.1 | 0.1 | 0.1 | 0.1 | 7 | | - | ٦. | 01 | - | ů, | ٦. | 16 | 1 c | u I | 0 | 0.1 | o I | | 1 0 N 3 -
1 -
1 U 3 E | | 119 17 24 | 19 15 1 | 119 19 15 | 119 09 34 | 119 12 14 | 119 13 21 | 119 09 50 | | 119 02 19 | 9 00 6 | 110 02 01 | 119 04 23 | 119 55 10 | 110 56 57 | 10 52 4 | 119 51 24 | 10 51 2 | 19 43 3 | 119 49 40 | C 14 61 | 119 42 56 | 19 37 3 | 119 38 55 | 5 V 4 D 1 | 119 44 26 | 119 41 08 | 110 45 24 | 119 37 39 | | 1.07
1.00
1.00
1.00
1.00
1.00
1.00
1.00 | | 47 07 51
47 07 51 | 07 2 | 47 95 23 | 47 10 27 | 47 03 57 | 24 67 42 | 47 07 41 | 0 70 6 | 47 09 59 | 50 | 47 09 14 | 47 05 05 | 47 14 03 | 47 13 57 | 7 5 1 | - | 7 14 1 | 7 14 5 | 47 14 40 | 1 51 | 47 15 03 | 7 13 1 | 47 13 29 | · • • • • • • • • • • • • • • • • • • • | 47 13 12 | 47 12 5H | 47 12 02 | 47 11 2A | POTAS-
SIUM.
DIS-
SOLVED
(MG/L
AS-K) | | | 0.6 | . ! | 10 | 11 | 8.9 | 9.5 | e e | w (ri | | 8 6 | 4 | 4 | 9.9 | a | 20.00 | 12 | ! | 3.9 | 3.1 | 2.5 | 3.0 | 6. 4 | 4
 | : | 3.9 | 0 | 0.5 | • | ! | 6. 2 | 4.1 | w.⊓
œ.n | U . | : | |) r | 2.0 | |---|-------|--------------|--------------|--------------|----------|--------------|--------------|----------|--------------|--------------|---|-------------|--------------|--------------|--------------|--------------|-----------|--------------|----------|--------------|--------------|----------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|----------|--------------|--------------|--------------|-----------------|--------------------------|------------|--------------|----------------------|----------------------| | SODIUM
AD-
SOPP-
TION
RATIO | | 6,6 | 1.6 | : 1 | 5.4 | 2.1 | | 8.1 | 1.2 | 3. | | 2.1 | | 0 | 17 | 6 | . 02 | 4 | 1.5 | 1.0 | î. | \$. | 1.0 | 1.0 | ٠, | 1 | .7 | 1.7 | • | } | • | 9. | ا ي | • | • | æ. | • • | . 4 |) vC | | PERCENT | | 080 | 36 | : : | 7.7 | 4 1 | 89 | 85 | † 1 | 35 | | 30 | 1 2 | 0 00 | 6 | a | 6 6 | 7. | ; | 56 | 13 | 7. | 52 | 30 | 55 | : | 21 | 42 | <u> </u> | ! | ! | 16 | 20 | 50 | 97 | 1 | : ~ | - 62 | 17 | | SONTUM.
DTC.
SOLVED
(MR/L
AS NA) | | 0.2 | 66 | | | - | e v | 99 | £ 6 | α.
φ. | | ۲.
د د | . 4 | n c | 2 | | 48 | | | | 18 | 13 | 76 | 52 | 6 | : | 6 | 3.8 | * | 1 | 1 | 17 | 17 | 18 | ç | 21 | ٠, | 3 4 | 18 | | MAGNE-
SIUM.
DIS-
SOLVED
(MG/L
AS MG) | | 0,0 | 41 | | 2.1 | 37 | | | | 13 | | 2] | | | · · | | | | | 19 | 64 | 4 | 50 | C | ę. | 12 | 15 | 12 | ξ. | 77 | 6.3 | 14 | 7 | 15 | | 15 | 7. Y | | 50 | | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | | 5.0 | 25 | 4.0 | 9.0 | 72 | 2.4 | 0.4 | 42 | 38 | | 36 | 25 | 4 | 1.3 | 4 | ~ | 16 | 4 | 32 | 27 | 22 | 24 | 32 | 34 | 32 | 37 | 21 | 90 | 30 | 29 | 64 | 34 | ب
س
م | 20 | 27 | 5 7
7 | 2 00 | , t | | HARDANESS.
NONCAD-
PONSTE
(MAZL
CACO3) | GRANT | c | 6 | C | 0 | 0 | c | 0 | 0 | c 4 | | E 0 | | | c | c | · c | . 6 | 75 | σ | 66 | 9 | 12 | C I | 11 | 0 | 96 | ٠ | ב
נית | n | 42 | σ | 6. | 72 | 662 | C | c c | : с | . o. | | HAPD-NFSS (HG/LAS/LAS/LAS/LAS/LAS/LAS/LAS/LAS/LAS/LAS | | 23 | 120 | 13 | 59 | 333 | 7 | 14 | 114 | 101 | 1 | 176 | 162 | 17 | 4 | 7. | . " | գ | 187 | 158 | 075 | 544 | 142 | 121 | 192 | 129 | 154 | 102 | 0 0 | 159 | 382 | 180 | 143 | 152 | # n | 129 | 134 | 123 | 181 | | FECAL. FECAL. O.7 UM-N° COLS. 100 ML) | | : | { | ; | ; | 1 | : | 1 | ; | 1 1 | | ! ! | : 1 | ; | 1 | 1 | 1 | ; | : | ; | ; | ţ | • | 1 | i | ; | : | 1 | ; ; | } | ; | ₹ | • | I | 1 | | : : | | | | DAFE
OF
SAMPLF | | 20-50-55 | 55-04-02 | 57-04-21 | 59-12-04 | 71-60-54 | 42-68-14 | 83-02-51 | 82-08-12 | 83-05-25 | | 52-01-00 | 00-40-05 | 83-05-56 | 43-05-23 | 41-80-08 | 83-05-17 | 51-04-04 | E7-08-19 | 23-09-00 | 82-08-15 | 93-03-18 | 60-10-18 | 55-08-03 | 39-01-54 | 14-09-18 | £2-00-24 | 50-10-04 | 21-60-75 | 7 | 16-09-28 | 83-05-17 | 42-64-12 | 93-03-19 | 12-00-17 | 47-11-25 | 50-03-03 | 50-10-18
50-10+18 | 51-00-00 | | 1001
1011
11-
160 | | 19/295-22201 | 19/295-22202 | 19/295-23303 | | 19/295-28404 | 10/205-03401 | | 19/205-08[0] | 10/206-10001 | | 19/295-2201 | 19/295-34502 | 10/306-03601 | 19/30F-07L01 | 10/305-15:01 | 1 7 7 . 1 | 19/30E-32ND] | | 20/236-10401 | 20/23F-16501 | | 201235-24403 | 10020-376/06 | 20/24E-07992 | 201245-09201 | 20/24E-09E02 | 20/25F-04v0] | 10030-3307-00 | | 20/25F-13301 | 20/25E-14K01 | 20/25E-17001 | נט כסני טשרי סר | T 11 6 T - 4 - 1 / 1 / 2 | 2015-31402 | 20/255-29401 | T () | フルノンモFープ6 年01 | Table 2.--Continued | FLUO-
RIDE.
DIS-
SOLVED
(MG/L
AS F) | | 1115. | 22.00 | | 0.01
. 4 4 6 6 4 | 01 | 1 4 7 0 1 | 1 | 11.6.5 | |---|--------|--|--|--|---|--|--|--|--| | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | | 18
17
17
63 | 14
17
4.3
3.8 | 46
1.0
26
20
18 | 17
16
20
56
15 | 21
23
18
17
5.5 | 9.0
17
18
45
8.0 | 7.0
6.4
10
120 | 8.9
19.9
4.0 | | SULFATE
DIS-
SOLVED
(MR/L
AS SO4) | | 27
35
17
19
110 | 11 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 8 T IV C C | 30
30
30
30
30
30
30
30
30
30
30
30
30
3 | 6 1 4 0 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 81 L L C O C L | 10
46
46
46
46
64 | 20 - E 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | | 11111 | 127
126
150
151 | 143 | 127 | 180
184 | ::::: | 171 124 125 | 11111 | | ALKA-
LINITY
FIELD
(M9/L
AS | | 145
170
149
134
371 | 1111 | 123
97
150 | 153 | 130
125
175 | 132
128
131
115 | 340 | 139
142
132
156 | | CAR-
HONATF
IT-FLD
(MG/L
AS
CO3) | | 11111 | 16 10 | | 18 15 | 00111 | 11111 | 1000 | 11111 | | CAR-
HOUATF
FET-FLN
(MS/1
AS CO3) | Liveas | 0 4 N 4 C | 0 | 000 | 11000 | 11010 | ccc00 | c o | 10000 | | HTCAR-
GONATE
IT-FLD
(MG/L
AS
HCO3) | | 11111 | 130
150
185
174 | 127
135 | 132
139
 | 227
255 | 11111 | 225
151
175 | 11111 | | AICAS-
BONATE
BOT-FLD
(MG/L
AS
HCO3) | | 139
171
155
455 | 11116 | 136
136
133 | 197
197
198 | 158
158
213 | 151
156
150
140 | 415 | 170
193
173
151
190 | | OATE
OF
SAMOLE | | 55-05-02
57-05-02
57-04-21
59-12-04 | 82-04-14
83-(5-27
82-08-12
83-15-26 | 52-01-00
50-10-19
50-04-00
83-05-24
83-05-23 | P2-09-14
R3-05-17
51-04-04
57-09-19
53-09-00 | 82-08-16
83-03-18
50-10-18
55-08-03 | 16-09-18
42-04-23
50-10-04
57-09-12
16-09-27 | 16-09-24
83-65-17
82-08-12
83-63-16 | 47-11-25
48-03-03
50-12-29
60-10-18
51-00-00 | | 100AL
10ENT-
1-
FIFR | | 19/24F-22402
19/24F-23004
19/24F-23004 | 19/29E-03=01
19/29E-08L01
19/29E-19401 | 19/29F-22C01
19/29E-34D02
19/30E-03E01
19/30F-07L01 | 19/37F-15L01
19/37F-32401
27/23F-10401 | 20/27F-15C01
20/27F-24401
20/24F-07301
20/24F-07302 | 27/24E-09-01
20/24F-09502
20/25E-04-01
20/25E-05-01 |
20/25F-13001
20/25F-14K01
20/25F-17001
20/25F-19001 | 20/25F-2940]
20/25F-2940]
20/25F-3630] | | SOLIDS. SUM OF SUM OF CONSTI- SFN, GEV. NO2+NO3 TUENTS. VITPATF NO2+NO3 PIS- TOTAL SOLVED (MG/L) AS NO3) AS NO | AS NO3) AS V) | 267 .90 3.7 | 263 <.10
244 <.10
240 2.0
230 1.6
190 23 1.6 | 144 .30 329 1622 31322 296 | 304 <-10
301 <-10
350 .01 390
390 3.1 294 | 355 7-7
264 2-2 2-7
2643 3-2 2-7
323 3-2 2-7
248 8-4 | 8
11 11110 | |---|------------------|--|--|--|--|--|---| | SOLIDS. PESIDUE S AT 186 C DEG. C T OIS- SOLVED (MAZL) | SOLVED
(MG/L) | 261
300
265
261
724 | 235 | 144
333
111 | 11111 | 1 1 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | 51L1CA+
21c-
50; VED
(MG/L
AS
AS
STO2) | | 73
50
56 | 2 4 C C Q | 35
72
72 | 55 111 | πης ωπ 44
π400 π 4 σ | 7 14464
7 11 11 11 11 11 11 11 11 11 11 11 11 11 | | DATE
OF
SAMPLE | SAMOLE | 13-03-07
55-03-07
57-04-21
59-12-04
71-09-24 | 82-03-14
83-05-12
82-08-12
42-05-12
42-04-23 | 52-01-00
50-10-19
50-04-00
83-05-24
83-05-24 | 82-08-17
83-05-17
51-04-04
57-08-19
53-09-00 | 92-603-603-603-603-603-603-603-603-603-603 | 13 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | LOC1L
InENT-
I-
FIFR | o u | 19/28F-22402
19/28F-22402
19/28F-23008 | 19/29F-034N1
19/29F-0ALN1
19/29F-14801 | 19/295-22C01
19/295-34D02
19/305-03501
19/305-07L01 | 19/30F-15L01
19/30F-32M1
20/23F-10MN1 | 20/23F-16f01
20/23F-24401
20/24F-07002
20/24F-09001
20/24F-09F02
20/25F-04401 | 20/255-13001
20/255-13001
20/255-1401
20/255-17001
20/255-19001 | | _ | |--------| | ರ್ಷ | | ã | | w | | ~ | | = | | _ | | ntinue | | -~ | | • 1 | | ┯. | | C | | = | | Ö | | řĭ | | J | | | | • | | 4 | | • | | • | | | | ^1 | | 2 | | ~ | | | | | | O | | | |]e | |]e | |]e | |]e | | MANGA- MESE, MANGA- TOTAL NESE, BECOV- DIS- CHG/L (UG/L (IIG/L (UG/L) AS MN) | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2133 23 | 111488 | 3.6 | 20 34 | 11111 | 17 <1 <3 <40 <20 <40 <40 <40 <40 <40 <40 <40 <40 <40 <4 | 1111 | |---|--|---|--|--|--|--|--|--| | TOTAL IPON. FOAGLE SOLVER (US/L (UG/L AS FF) AS FF) | 0.01 | | 1008
1008
11108 | 11101 | 12
1
<10
1000 | | 55.0
6.1.1
0.0
1.1.1 | 1118 | | nate
ne
Sawolf | GRANIT
55-09-02
55-09-02
57-04-21
59-104 | - 00 % - | 52-01-00
60-10-19
50-04-00
83-05-26 | 82-04-14
83-05-17
51-04-04
57-08-19 | 82-08-16
83-03-18
50-10-18
55-08-03
39-01-24 | 16-09-18
42-04-23
50-10-04
57-09-12
16-09-27 | 16-09-28
83-05-17
82-08-12
83-03-18
71-05-21 | 47-11-25
48-03-03
50-12-29
60-10-18 | | LOCAL
19ENT-
1-
FIFD | 19/22E-22R01
19/26E-22R02
19/29E-23N08
19/28E-28K04 | 9/29E-03P0
9/29E-08L0
9/29E-1940 | 19/29E-22C01
19/29E-34002
19/30E-03E01
19/30E-07L01 | 19/3nE-15L91
19/30E-32m01
20/23F-10W01 | 0/23E-
0/23E-
0/24E- | 20/24£-09n01
20/24£-09F02
20/25£-04w01
20/25£-05P01 | 20/25E-13001
20/25E-14K01
20/25E-17001
20/25E-19001 | 20/25E-21492
20/25E-29401 | Table 2.--Continued | TFMPE2-
Ature
(Deg C) | | 20.7 | 13.7 | 13.00 | 12. | 4444 | 911110 | 0 4 4 E E E E E E E E E E E E E E E E E | 196.5 | |--|--------|--|--|--|---------------------------------|---|--|--|--| | STAND- | | 8.2
7.7
7.6
8.8 | 7.7
7.7
7.8
7.6 | 2 | 8.7.7.
6.7.7. | 7 8 8 5 7 7 8 8 5 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 | 8.7.7.8
7.98 | 7.07
7.07
7.07
7.00
7.50 | 2.8
0.8
1.0
1.0 | | SPF-
CIFIC
CON-
DUCT-
ANCE
WHOS | | 334
345
422
501
609 | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 538
440
515
509 | 531
398
438
471
471 | 273
265
275
269
276 | 273
271
281
283
456 | 376
382
381
319
317 | 317
328
334
349
345 | | FLFV. OF LAND SUPFACE DATUM (FT. ARNVE | | 1260.00
1250.00
1152.00 | 11111 | 1155.00 | 11111 | 11a2 00 | 1070.00 | 1195.00 | 11111 | | 0F9TH
0F
WFLL+
TOTAL
(FEFT) | | 416
527
110
212 | 350
350
350
350 | 134
134
134
134 | 134
134
134
134
134 | 165
165
165
165 | 165
165
165
165 | 75
75
77
797
797 | 727
727
727
727 | | 112TE
OF
SAMPLE | | 56-03-16
82-08-12
82-08-18
59-10-21
65-03-17 |
61-11-27
63-04-10
64-04-09
65-03-17
66-03-08 | 56-09-14
57-11-05
58-03-29
58-10-31
59-10-21 | 65-03-08 | 55-05-26
56-06-20
57-11-05
58-10-31 | 61-11-27
63-04-10
64-04-09
65-03-17
56-06-20 | 58-10-31
59-10-21
64-04-09
51-03-30
51-07-03 | 51-07-13
52-03-06
53-12-04
55-08-24
56-06-20 | | 650-
10610
UNIT | Tivent | 122642V
1228WJPW
121649V | 121C44V
121C44V
121C44V
121C46V | 11111 | 11111 | 121Caav
121Caav
121Caov
121Cav | 121C42V
121C42V
121C42V
121C4PV | 11111 | 11111 | | SE0.
NO. | | 01
01
01 | 01 | 0.1 | | <u>.</u> | 01 | 0.1 | | | L 0NG-1
1 - 1
1 UD-1 | | 110 33 12
110 30 53
110 15 21
119 17 40 | 110 19 54 | 119 17 51 | | 119 20 15 | 119 21 12 | 119 19 50 | | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 47 13 14
47 11 47
47 1- 04
47 13 13 | 47 13 13 | 47 11 59 | | 47 11 57 | 47 11 20 | 47 11 23 | | | LOCAL
INENT-
T+
F TFP | | 2n/2kF-21nn1
2n/2kF-15k91
2n/2kF-113n1
2n/2kF-17301 | 2n/29E-17sn2 | 2n/29E-27En] | | 20/28E-2950] | 20/24E-31001 | 20/286-32601 | | | POTAS-
SIUW.
DIS-
SOLVFD
(MG/L
AS K) | | 4 % % % % % % % % % % % % % % % % % % % | 10
9.8
11
11 | 7 7 7 . 0 7 . 7 . 4 4 | - 00 - 00 00 00 00 00 00 00 00 00 00 00 | 0 N 0 0 V 4 | ww4n4
••••••
∿∞cow | 4 W F W 4 | |---|-------|--|--|--|--|--|--|--| | SODIUM
AD-
SORP-
TION
RATIO | | 1.3 | | 111111111111111111111111111111111111111 | 11111111111111111111111111111111111111 | , | 9 | 1.1 | | PFACENT | | 28
36
29
29 | 2 6 6 8 8 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 25
26
27
27
27 | 7 0 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 28
28
28
28
28 | 19
22
21
21
21 | 21
22
31
22
21 | | SONTUM.
91c-
SOLVED
(MG/L
AS NA) | | 4 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 39
37
40
42 | 32
29
31
33 | 200000 HILL 9300000000000000000000000000000000000 | 6 6 1 L C | 100
000
171
171 | 7 8 5 8 6
7 8 8 6 | | MAGNE-
SIUM.
PIS-
SOLVED
(MG/L
AS MG) | | 10
10
17
25 | 20
18
22
21 | 20
19
17
17 | 118
117
110
110
110
100 | 10
11
10
18 | 44 L L L D D | 24 4 F. E. | | CALCTUM
DIS-
SOLVED
(MG/L
AS CA) | | 26
46
54
54
54
54 | 50
40
57
59
56 | የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ | 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 22
22
23
48
8 | 40
37
26
26 | 26
24
29
29 | | HAPD-
NESS.
NON CAP-
BONATE
(MACL
CACO3) | GRANT | 00000 | 00000 | 18
7
0
3 | COOCO UMU40 | | Neceo | cccc | | HAPD-
CACO3) | | 130
94
187
180
238 | 207
196
241
238
226 | 217
206
167
207
190 | 11666
11666
11666
11666
11666
11661
11661
11661
11661 | 96
101
103
101
194 | 158
150
154
131 | 131
131
118
134
147 | | COLI-
FORM.
FECAL.
OW-MF
(COLS./ | | 11111 | 11111 | 11111 | 11111 11111 | 11111 | 11111 | ::::: | | DATE
OF
SAMPLE | | 56-03-15
32-09-12
82-08-18
59-10-21
65-03-17 | 41-11-27
63-04-10
64-04-09
65-03-17
65-03-08 | 56-09-14
57-11-05
59-03-28
58-10-31
59-10-21 | 61-11-27
63-04-10
64-04-03
65-04-23
65-03-08
55-05-20
55-05-20
57-11-05
59-10-31 | 61-11-27
63-04-10
64-04-09
65-03-17
56-06-20 | 54-10-31
59-10-21
54-04-09
51-03-30
51-07-03 | 51-07-13
52-03-05
53-12-04
55-09-24
56-06-20 | | LOCAL
IOFNI-
IF | | 20724F-21491
20724F-26491
20729F-11901
20728E-17901 | 20/296-17502 | 20/295-2750] | 20/29F-29501 | 20/28F-31C91 | 20/20£-32501 | | Table 2.--Continued | FLUO-
RIDE•
DIS-
SOLVFD
(MG/L | | ហ
លល់ 4 យ 4 | 4 M M 4 4 | | | ቀ ቀ ጠቀሰ ጠየ | um w m w w - m | |---|-------|--|--|--|--|--|--| | CHLO-
RIDE.
DIS-
SOLVED
(MG/L | | 7 . 1
4 . 5
1 . 8
1 . 8 | 3.8
9.5
11
10
5.5 | 21
16
10
13 | 11
6.55
8.88
8.20
7.77
7.55
7.55 | 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | SULFATE
DIS-
SOLVED
(M9/L
AS SO4) | | 116
119
46
46 | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | .444
.446 | A W X Q Q Q C C C C C C C C C C C C C C C C | FF # 00 C C | 6 K 2 C | | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | | 141 198 | 11111 | | 11111 11111 | | | | ALKA-
LINITY
FIFLD
(MG/L
AS
CACO3) | | 148

217
281 | 251
235
281
281 | 100
100
204
203 | 1226
2011
2004
2004
2004
2004
2004
2004
2004 | 9990 II II 1999 | 6.1
6.1
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1 | | CAR-
BONATE
11-FL)
(MG/L
AS
CO3) | | • • | 11111 | 11111 | 11111 11111 | 11111 1 | | | CAR-
RONATE
FET-FLD
(MG/L)
AS CO3) | THAGS | 0 00 | 00000 | ପର୍ବବନ | 20000 2000 | | 0000 0000 | | ATCAP-
RONATE
IT-FLD
(MG/L
AS | | 190 | 11111 | 11111 | !!!!! !!!!! | | | | AICAR-
AONATE
FET-FLD
(MG/L
AS
HCO3) | | 140
255
3452 | 318
342
342
346 | to the material of | 275
236
253
253
253
1120
120
121
121 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 11 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | OATE
OF
SAMPLE | | 56-03-15
82-08-12
82-08-18
59-10-21
65-03-17 | 61-11-27
63-04-10
64-04-09
65-03-17
66-63-03 | 56-00-14
57-11-05
58-03-25
59-10-31
59-10-31 | 711-27
64-10
64-10
65-04-10
65-03-03
65-03-03
75-06-20
77-11-05
78-10-31 | M O O | 51-10-10-10-10-10-10-10-10-10-10-10-10-10 | | LOCAL
TORNT-
TFR | | 20/24F-21401
20/24F-26401
20/24F-11091
20/24F-17901 | 20/29F-17/02 | 20/206-27501 | 20/296-29501 | 29/24F-31001 | 20/28F-32001 | | τ | Ś | |-----------|---| | Continued | ١ | | _ | ί | | - | • | | 2 | i | | • | i | | • | i | | + | , | | c | : | | ~ | i | | | ! | | C | , | | - 1 | | | · | | | • | | | • | | | ~ | ١ | | • | | | | | | | | | α |) | | | | | | | | | | | | | | Table | | | | H | Table 2. | Con | -Continued | | | | | |--------------------------------------|----------------------|--|--|---|---|---|--|--| | 1400.1
1440.1
1441.1
1441.1 | UATF
OF
SAMPLE | SILICA,
DIS-
SOLVED
(MG/L
AS | SOLTOS.
RFSTRUE
AT 180
DFG. C
21S-
SOLVED
(MG/L) | SOLIDS.
SUM OF
CONSTI-
TUENTS.
DIS-
SOLVER | NITRO-
GFN•
VITTOATF
TOTAL
(MG/L
AS NO3) | NITRO-
GFN•
NO2+NO3
TOTAL
(MG/L | NITRO-
GEN•
NO2+NO3
DIS-
SOLVE9
(MG/L | | | | | TUARA | Ę. | | | | | | | 0/26=-2140 | 5-03-1 | ; | 280 | ; | ۲. ۵ | ; | ; | | | 29/265-25401 | 2-04-1 | ۲, | 1 | 239 | ! | ; | 2.8 | | | 0/295-1109 | 2-08-1 | 4.7 | 1 | 279 | | ; | 1.0 | | | 0/28 <u>5</u> -1799 | 59-10-21 | ო დ
4 წ | 320
380 | 306 | 13 | !! | : ; | | | 20/245-17-02 | 1-11-2 | 36 | 351 | ~ | 11 | ; | ; | | | | 3-04-1 | 36 | 338 | 3 | ហំ | ; | ; | | | | 4-04-0 | 35 | 388 | OC 1 | 5.7 | : | ! | | | | 65-03-08 | W F
V 4 | 372 | 364 | 0
0
0 | ; ; | : : | | | 20/295-27501 | 5-09-1 | 33 | 338 | 343 | 4.1 | ; | ; | | | | 7-11-0 | ; | 332 | | 4.4 | 1 | ; | | | | 8-03-5 | 6.7 | 297 | ന | 4.6 | ; | ; | | | | 59-10-31
59-10-21 | 6 B
B
B | 333
328 | 335
320 | 7.3 | : : | :: | | | | 1-11 | 04 | - 4 | 333 | | ; | ; | | | | 3-04 | 39 | v | 251 | | 1 | ; | | | | 4-04 | 8 | 8 | 282 | | ; | ; | | | | 65-04-53 | 36 | 300 | 298 | 7.9 | ; | ; | | | | 5-03 | 36 | C | 29R | | ; | ! | | | 26/285-29501 | 5-05 | 20 | 602 | 194 | 13 | ; | ; | | | | 96-9 | č | 210 | 196 | | ; | ; | | | | 7-11 | ; | و.
د د | ! | 14 | ! | : | | | | 58-10-31
59-11-21 | ונות
מב | 207 | 193
195 |
 | ; ; | : : | | | | 1-11-2 | 40 | 112 | 194 | | ; | ; | | | | 3-04-1 | 9.5 | 225 | 196 | 11 | ; | ; | | | | 4-04-0 | 5.7 | 217 | 197 | | ; | ; | | | 20/23E-31C01 | 65-03-17
55-06-20 | ማ
የ
የ | 215
312 | 194
300 | 13
15 | 1 1 | 11 | | | | 54-17-31 | 5.5 | • | 254 | 8 | ; | i | | | | 59-10-51 | 53 | 4 | 254 | 12 | ; | ; | | | | 64-04-09 | 25 | c | 252 | 11 | ; | ; | | | 20/28E-32C01 | 51-03-30 | ሲ
ሉ ሉ | 230
530 | 228
226 | a 4 | : : | : : | | | | CA-16-16 | 0 | 367 | 0 2 2 | 0.0 | ! | } | | | | 51-07-13 | ι.
1 | 232 | 226 | 0.0 | ; | ; | | | | 40-50-5r | ב ו
ב | 33.5 | 233 | , r | ; | : ; | | | | 55-08-24 | י נ | 162 | 923 | , 6 | ! ! | : ; | | | | 55-06-20 | :E | 250 | 241 | | ; | ; | | | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS WN) | | ; | ~ | * * | : | ; | 1 | ; | : | ; | 1 | 1 | : | : | 1 | 1 | 1 | ; | ; | ; | : | , | 1 1 | : : | ; | ; | ! | ; | : | ; | : | 1 | : | ; | ; | ; |
; | . 1 | 1 | ; | ł | | |---|---------|--------|--------------|----------------|--------|--------|--------------|------------|----------|---------------|--------|--------------|--------|----------|--------|--------|-------|-------|-----|-------|-------|----------------|------------------|------------|----------|------|-------|-------|----------|-------|--------------|----------|-------|---------|--------------|-------|--------|--------|--------|-------|----------|--| | MANGA-
NESE.
TOTAL
RFCOV-
EDARLF
(UG/L
AS MN) | | 1 | ; | ; | ; | <50 | <50 | <50 | <50 | <50 | <50 | ł | ! | ! | ! | 1 | 05× | <50 | <50 | <50 | <50 | I | : : | : : | ł | ; | v5> | <50 | <5n | <50 | : | ; | ; | <50 | ! | ; | į | ; | 1 | į | ; | | | IRON.
DIS-
SOLVED
(UG/L
AS FE) | | ; | 6 > | 6 | ; | ! | ; | 1 | : | 1 | ; | ; | : | ! | • | 1 | ! | ; | ; | ; | ; | | 1 1 | ; | ļ | ; | ļ | ; | ! | ! | ! | 1 | ; | ! | ; | ! | ł | : | 1 | ; | : | | | TOON. TOTAL RECOVERABLE (US/I AS FE) | | < 1 o | | : | 630 | 20 | 20 | <10
<10 | 10 | 20 | <10 | 20 | 20 | <10 | 20 | <10 | <10 | 9 | 4 0 | 440 | 0 7 | 4 | 4 | 4 | 7.0 | <10 | <10 | 2 | 290 | 30 | 10 | 140 | - | 150 | 10 | 10 | 9 | | 9 | | 10 | | | DATF
OF
SAMPLE | T:WVG5) | 6-03-1 | 82-09-12 | 2-08-1 | 9-10-2 | 5-03-1 | 1-1 | 3-04-1 | 64-04-08 | 5-0 | 6-03-0 | 6-00-1 | 7-11-0 | 58-03-58 | 8-10-3 | 2-11-b | 1-11- | 3-04- | 40 | 5-04- | -60-9 | ()
()
() | 4.05 | 7-11- | 58-10-31 | 9-11 | 1-11- | 3-04- | 60-50-59 | 5-03- | -90-9 | 58-10-31 | 9-10- | - 40- 5 | 1-03- | 1-07- | 1-07-1 | 0-60-6 | 3-12-0 | 5-0-5 | 56-06-20 | | | LOCAL
IDENT-
I-
FIFR | | 9/26F | 20/25E-26K01 | 3/2eE | 0/2RE | | 20/28F-17002 | | | | | 20/28E-27F01 | | | | | | | | | | 10305-3050105 | 6 12 1 - 10 3 10 | | | | | | | | 20/285-31001 | | | | 20/28E-32C01 | | | | | | | | | TEMPER-
ATURE
(DEG C) | | 44 E E E E E E E E E E E E E E E E E E | 22.0 | 011
011
0.041
0.04 | 444 | 10.01
10.01
10.05
10.05
10.05
10.05 | 18.5 | 18.2 | |---|-------|--|--|--|--|--|--|--| | STAND-
ARD
UNITS) | | | 7 7 7 9 8 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | *************************************** | | 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | 88877
74888 | | SPE-
CIFIC
CON-
DUCT-
ANCE | | 386
371
330
326
325 | 462
451
434
315 | 315
316
317
327
323 | 320
3120
321
321
321
321 | 320
320
320
313
320
320
320 | 313
330
320
312
312 | 361
344
237
401
323 | | ELFV. OF LAND SUPFACE DATUM (FT. AROVE | | ::::: | 1187.30
1187.00 | 1187.30
1187.30
1187.30
1187.30 | 1187.30
1187.30
1187.30
1187.30
1187.30 | 187 | 1462.00 | 1279.00 | | DEOTH
OF
WELL+
TOTAL
(FEET) | | 725
725
725
725 | 725
725
725
712 | 712
712
712
712
712 | 2011
2011
2011
2011
2011
2011 | 2117
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 790
790
790
790 | 1350
165
18
41
407 | | DATE
OF
SAMPLE | | 67-11-05
58-10-31
59-10-21
61-11-27
63-04-10 | 64-04-09
65-03-17
66-03-09
43-00-00
51-03-30 | 52-03-06
53-12-04
55-08-24
56-06-20
57-11-05 | 58-10-31
51-11-24
63-04-10
64-04-09
65-03-17
66-03-09 | 11110 | 63-04-10
64-04-09
65-03-17
66-03-09
82-08-12 | 83-05-17
50-04-00
60-10-19
51-00-00
60-10-18 | | 6F9-
L061C
UNIT | Thrab | ::::: |
122C3RV
122C4RV | 122039V
122039V
122039V
122039V
122039V | 122CPPV
122CPPV
122CPPV
122CPPV
122CPPV
122CPPV | | 121CAPV
121CAPV
121CBPV
121CAPV
121CAPV | 172099 | | SFQ. | | 91 | 01 | | | 01 | 0 1 | 00000 | | L 0N3-
I-
TUDE | | 119 19 50 | 119 19 11 | | | 119 19 06 | 119 06 32 | 119 03 43
119 13 13
119 20 25
119 52 00 | | LAT-
I-
TUDE | | 47 11 23 | 47 11 01 | | | 1, 47 11 00 | 47 15 40 | 47 12 55
47 11 24
47 18 45
47 16 07 | | FIED
INFNT-
INFNT-
LOCAL | | 20/24E-32C01 | 20/24E-32401 | | | 20/28E-33F01 | 20/29E-01A01 | 20/29F-11A01
20/29E-18J01
20/29F-28C01
21/24E-31L01 | | | POTAS-
SIUW.
DIS-
SOLVED
(MG/L
AS K) | | 4.5
4.1
12
11
11 | 4.7
4.5
5.0
5.1 | 80808
80808 | 00000
00000
00000 | CONTRACT ORRORD | | e 4 4 5 6
e 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | |-----------|--|-------|--|--|---|--|---|--|---| | | SODIUM
AD-
SORP-
TION
RATIO | | | 2.3
1.8 | 08788 | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | PERCFNT
SOJIUM | | 22
21
50
50 | 20
20
23
45 | 74
44
64
74
74 | 7 4 4 4 4 4 9 0 0 0 | 44444 444Nn
QQNQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ | 444 U4
9 0 0 0 0 F | 248
661
83
83 | | | SOBTUM.
BIS-
SOLVED
(MG/L
AS NA) | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 34
35
36 | 36
37
38
38 | 8 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 7 E E E E E E E E E E E E E E E E E E E | 40
21
35
59
17 | | ıed | MASNE-
SIUM.
DIS-
SOLVED
(MG/L
AS MG) | | 16
18
6.4
7.7 | 202
21
71
8.0 | 80 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | , « « « « « « « « » « » « » « » « » « » | מממר דיניטיר | | 8 2 2 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | Continued | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | | 32
32
17
16 | 38
37
34
17 | 18
17
17
17 | 20
17
16
16 | 17
20
20
17
16
18
18
12
17 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 19
31
8.5
13 | | % | HARD-
NESS.
NONCAR-
RONATE
(MAYL
CACO3) | FUAUT | 13.0
0
0
0 | 90
125
00
126 | 00000 | 00000 | occc ccocc | . coco o | 999 | | Table | HARD-
NFSS
(MG/L
AS
CACO3) | | 146
154
69
70 | 194
183
171
71
78 | 74
83
77
77 | 78
75
76
76 | 75
77
77
77
73
73 | 71
77
72
72
71 | 84
127
44
60
126 | | | COLI-
FORM.
FFCAL.
UM-ME
(COLS./ | | 11111 | !!!!! | ::::: | 11111 | 11121 11111 | 11111 | 11111 | | | i)ATE
OF
SAMPLF | | 57-11-05
59-10-31
59-10-21
61-11-27
63-64-10 | 64-04-09
65-03-17
66-03-09
43-00-00
51-03-30 | \$2-03-06
\$3-12-04
\$5-08-24
\$6-06-20
\$7-11-05 | 59-10-31
59-10-21
61-11-24
63-54-10
64-04-09 | 65-03-17 65-03-09 82-08-13 83-03-17 55-05-26 55-05-26 57-11-05 57-11-05 | 63-04-10
64-04-09
65-03-17
66-03-09 | A3-0 ^E -17
50-04-00
60-10-19
51-00-00
60-10-18 | | | LOCAL
IDENT—
I +
FIFP | | 20/2AE-32C01 | 20/286-32401 | | | 20/2 ^A E-33£01 | 20/296-01401 | 20/20F-11401
20/29F-18J01
20/29F-28C01
21/24F-31L01 | Table 2. -- Continued | LOCAL
IPENT-
I-
FIER | DATE
OF
SAMPLE | AICA2-
GONATE
FFT-FLD
(MG/L
AS
HCO3) | RICAR-
RONATE
IT-FLD
(MG/L
AS
HCO3) | CAP-
HONATE
FFT-FLD
(MAZ) | CAP-
PONATE
IT-FLD
(MG/L
AS
CO3) | ALKA-
LINITY
FIELD
(M3/L
AS
CACO3) | ALKA-
LINJTY
LAB
(WG/L
AS | SULFATE
DIS-
SOLVED
(M3/L
AS SO4) | CHLO-
RIDE,
DIS-
SYLVED
(WG/L
AS CL) | FLUO-
RIDE.
DIS-
SOLVED
(MG/L
AS F) | |--|--|--|--|--|---|---|--|---|---|--| | 20/24E-32501 | 58-11-05
58-10-31
59-10-21
61-11-27 | 172
172
176
176
176
176 | 11111 | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 11111 | 141
139
128
751 | 11111 | νννν
ααιο 4./ | 100
90°0
90°0 | mmr.r.r | | 20/296-32401 | 64-04-09
65-03-17
66-03-00
63-00-00
61-03-30 | 205
196
136
136 | 11111 | | | 158
151
156
117 | | | 16 11 12 13 15 15 15 15 15 15 15 15 15 15 15 15 15 | | | | 52-03-06
53-12-04
55-08-20
57-11-20
57-11-31
59-10-31
63-04-04-0 | 11001110011100111100111111111111111111 | 11111 11111 | 66060 60660 | 11111 11111 | 11111111111111111111111111111111111111 | | 4 - 4 r & r - 4 c x | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 1 | | 20/29F-33=11 | 65-03-17
65-03-17
62-03-17
82-03-17
55-05-25
55-05-25
57-11-05
57-11-05 | | 155 | 60 6 0000 | 50 | 201 C C C C C C C C C C C C C C C C C C C | 13.0
8.0
11.0
11.1
11.1
11.1
11.1
11.1
11. | | 21112
21111
200000000000000000000000000 | σαφνιν φινήν | | 20/20F-01An] |
63-04-10
64-04-09
65-03-17
66-03-04 | 101
100
100
100
100
100
100
100
100
100 | 159 | | ° | 1133 | 133 | 4 | 100.01 | | | 20/29F-11401
20/29F-18Jn1
20/29F-28C01
21/24E-31L01 | 83-05-17
50-04-00
60-10-19
51-00-00
69-10-18 | 145
127
170
170 | 166 | 10000 | 0.11111 | 119 | 132 | ድረ ነገር ድድ
ድር ነገር ድድ | 12
13
1.5
22
8.0 | 6.
1.00
7. | | NITRO-
GEN+
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | | :: | ; | : | ; | ; | ! | : | : : | | ; ; | : : | ! | : | ; | ; | ! | ; | ! | 1 | 1 : | 000 | נין: | ; | ; | : | ; | ; | ; | ! | ; | | <.10 | <.10 | ! | ; | ; | ! | |---|--------|--------------|----------|----------|------------|-----|------|------|------------|---|-------|--------------|----------|-----|--------|-------------|----------|----------|---------|------------|--------|--------|--------------|----------|----------|----------|----------|----------|----------|------------|----------|----------|--------------|----------|--------------|---------------|--------------|--------------| | NITRO-
GEN*
NO2+NO3
TOTAL
(MG/L
AS N) | | ;; | ; | 1 | ; | : | ! | ! | : : | | | : : | ; | ; | ; | • | ! | : | ; | ; | 1 | : 1 | : : | ; | ! | 1 | ; | ! | ; | ; | 1 | ; | : | ; | 1 | ! | 1 | ; | | NITRO-
GEN:
NITRATE
TOTAL
(MG/L
AS NO3) | | 25 | ٠. | 00. | 00. | 1.7 | e : | ç | .20 | • | - C • | • | 30 | .10 | 00. | .20 | 00. | 00. | • 30 | .10 | 00. | : | .10 | 010 | .20 | 1.2 | .20 | 00. | 00. | ٠. | .10 | 00. | : | ; | 20 | 06. | • | 7.3 | | SOLIDS.
SUM OF
CONSTI-
TUENTS.
DIS-
SOLVER | | 246 | 231 | 230 | 735 | 297 | 278 | 275 | 243 | , | 223 | 221 | 226 | : | O. | N | 229 | ന | m | Λ, | A I | ຕເ | 214 | 219 | 201 | 219 | 223 | 222 | 220 | 550 | 216 | 216 | 243 | 544 | 218 | 191 | ! | 550 | | SOLIDS. PESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) | | 250 | 228 | 228 | 731 | 314 | 305 | 400 | 555
550 | • | u c | uΛ | 220 | ~ | _ | N | 223 | സ | (m) | 231 | 228 | : ; | 211 | 212 | 211 | 212 | 218 | 218 | 228 | 22B | 217 | 211 | ! | ; | 234 | 180 | 282 | 240 | | STLICA,
DTS-
SOLVED
(MG/L
AS
SI/2) | T14845 | 50 | 45 | 47 | 64 | 55 | 47 | 4 1 | U 4 | | | 0 4 | 4 4 | : | 47 | 64 3 | 14 | 47 | ٠.
ب | 4] | 6. | 4 4 | 4
7 | 04 | ; | C 4 | ٥.2 | 4 | 64 | 6 2 | 37 | g. | 4
T | 44 | 77 | 4 | 1 | 59 | | UATE
OF
SAMPLF | | 57-11-05 | 59-10-51 | 61-11-27 | 63-04-10 | -37 | 1111 | 40,1 | 51-03-30 | • | | יוני
קיני | 55-05-20 | 7-1 | 9-10-3 | 59-10-51 | 61-11-24 | 63-04-10 | 0-70-5 | 5-03-1 | 6-03-0 | 1-04-7 | 55-05-24 | 55-06-20 | 57-11-05 | 54-10-31 | 59-11-51 | 61-11-57 | 63-04-10 | 64-04-00 | 6=-03-17 | 60-60-99 | 82-08-12 | 83-05-17 | 50-04-00 | 60-10-16 | 51-99-00 | 40-10-1B | | LOCAL
Ingar-
T-
FIFR | | 20/245-32C01 | | | | | | | 7042832707 | | | | | | | | | | | | | | 20/28E-33F01 | | | | | | | | | | 20/29=-01A01 | | 20/295-11001 | 20/295-14:101 | 20/295-29001 | 21/24=-31101 | | LOCAL
IDE91-
I =
FIER | DATE
OF
SAWDLE | IONN. TOTAL PECOV- FRABLE (UG/L. AS FF) | IRON.
DIS-
SOLVED
(UG/L | MANGA-
NESE.
TOTAL
PPCOV-
FPARLF
(UR/L
AS MN) | MANGA-
NESE.
DIS-
SOLVED
(UG/L
AS WN) | |---|----------------------|---|----------------------------------|---|--| | | THASA | | | | | | 20/286-32001 | -11-0 | 20 | ; | ł | 1 | | | -10-3 | 20 | 1 | 1 | ; | | | -10-5 | 120 | 1 | ; | ; | | | 61-11-27 | 5.0
6.0
6.0 | : : | , 55
50
50
50
50
50
50
50
50
50
50
50
50
5 | 1 1 | | | • | 7 | • | ;
, | | | | 0-90-9 | <10 | 1 | <50 | 1 | | | 5-03-1 | 30 | ! | <50 | : | | 100000000000000000000000000000000000000 | 6-03-0 | 20 | ! | 2 06 | ! | | 16925-35203 | 51-03-30 | 20 | = | 1 1 | 1 1 | | | | , | | | | | | 2-03-0 | 30 | ł | 1 | : | | | 0-74-0 | ٥, ' | 1 | i | ! | | | 2-50-5 | 017 | : 1 | : : | • • | | | 57-11-05 | 0 - [| ! ! | : : | 1 | | | ;
; |) | | | | | | 9-10-3 | 4.0 | : | 1 | ; | | | 59-16-21 | 64 | ! | 1 ; | ; | | | 7-11-5 | 60 | ! | 45V | ! | | | 3-04-1 | 61> | 1 1 | \
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\ | • • | | | | | 1 | ne. |) | | | 5-03-1 | 170 | ; | <5n | ; | | | 9-66-9 | 20 | ł | <50 | ; | | | 2-04-1 | ; | ΰ, | 1 | ∵ ∵ | | 20/28E-33E01 | 55-05-26 | 70 | c ; | 1 1 | - ; | | | | | | | | | | 56-06-20 | 60 | 1 | 1 | 1 | | | 7-11-0 | 100 | } | ! | : | | | | - 6 | ! | : | ; | | | 2-01-1 | 0.0 | : : | 1 4 | 1 1 | | | 2-11-1 | e n | ! | 063 | 1 | | | 3-04-1 | c a | ; | <5n | ! | | | 4-04-0 | 30 | ; | <5n | ; | | | 65-03-17 | 46 | ; | <50 | ; | | | 6-03-0 | 0 4 | ; | <50 | ; | | 20/29E-01401 | 2-08-1 | : | 1 | ; | 18 | | | -050- | ; | 10 | : | 11 | | -1140 | -04-0 | 100 | ; | ; | 1 | | 20/295-18J01 | 60-10-19 | <10 | t
i | ; | 1 | | -2AC0 | 0-00- | ! | ; | ; | : | | -3110 | -10-1 | C 60 | ; | ; | ; | | TEMPES-
ATURE
(DEG C) | | • | 30.0 | 20.0 | 14.5 | 25.2 | 17.0 | 0.62 | 15.0 | 25.5 | 13.4 | 15.7 | ; | 14.5 | 14.5 | 15.7 | 14.0 | 15.5 | 22.9 | 23.1 | 23.1 | 23.6 | 11.5 | 12.0 | 11.9 | 12.0 | : | : | : | ; | : | ; | ; | 1 | ; | • | ; | 18.4 | 18.4 | 17.0 | 2. | |---|-------|---|----------------|-------------|--------------|----------|--------------|----------|----------|--------------|--------------|--------------|--------------|----------|----------|--------------|----------|--------------|--------------|----------|----------------|----------|--------------|--------------|--------------|----------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----------|--------------|--------------|--------------|--------------|----------|--------------| | SH
(STAND-
ARD
UNITS) | | • | | | - 0 | 7.5 | : | ; | 7.5 | 8.1 | 7.5 | 7.7 | 7.5 | 7.9 | 7.8 | 7.1 | 7.4 | 7.5 | 8.2 | 8.3 | æ | 8.7 | ; | 7.4 | 7.6 | 7.0 | 7.5 | 7.3 | 7.7 | 4.6 | 7.7 | 8.0 | 7.4 | 9.7 | 8.0 | 6.8 | 7.4 | 7.4 | 7.6 | 4.0 | ۲., | | SPE-
CIFIC
CON-
DUCT-
ANDE | | | : | i | 2) (4) | 282 | 270 | ; | 263 | ; | 929 | 380 | 399 | 630 | 168 | 200 | 200 | 231 | 405 | 410 | 372 | 373 | 500 | 158 | 159 | 220 | 792 | 3580 | 006 | 4560 | 1 420 | 398 | 5040 | 348 | 196 | 282 | 286 | 328 | 325 | 361 | : | | ELFV. OF LAND SUPFACE DATUM (FT. ARNVE | | | ! | | 1325 00 | 1325.00 | : | ; | : | ; | 1249.00 | 1150.00 | : | ; | : | 12A0.00 | 1290.00 | 1684.00 | 1670.00 | 1670.00 | 1690.00 | 16AC.00 | 1630,00 | 2100.00 | 2250.00 | 2250.00 | 1 | : | ; | 1107.00 | : | ł | ; | 1374.00 | ; | 1404.00 | : | ľ | 1215.00 | 1215.00 | : | | DF2T4
OF
WFLL*
TOTAL
(FEFT) | | | 0007 | 4 20 | 4.0 | 1850 | 260 | 260 | 260 | 618 | 59 | 115 | 150 | 150 | 150 | 138 | 138 | 651 | 1345 | 1345 | 1335 | 1335 | 150 | 118 | 105 | 105 | 7.8 | 64 | 40 | 64 | 187 | 17 | 43 | 330 | 330 | 4 | 123 | 355 | 451 | 451 | t | | NATE
OF
Sample | | | 22-10-55 | 22-10-00 | 42-0-04 | 83-03-18 | 42-04-55 | 55-07-55 | 60-10-19 | 55-07-52 | 83-03-17 | A2-07-26 | 51-04-25 | 60-10-19 | 61-05-03 | 82-01-56 | 83-03-18 | 60-10-19 | 85-09-08 | 83-05-18 | 85-09-08 | A3-05-18 | 78-05-24 | 61-01-09 | 85-09-09 | A3-05-17 | 56-03-06 | 52-01-15 | 52-04-11 | 53-01-23 | 53-01-23 | 52-07-15 | 52-07-15 | 51-05-00 | 53-09-00 | 52-00-00 | 52-06-00 | 71-09-24 | A2-07-27 | 83-05-17 | 77-10-66 | | 650-
L061C
UNIT | £N∳at | | : | : | 1000001 | 12260RD | ; | ; | : | 1 | 1126LCV | 122WVPW | 1 | 1 | 1 | 122WNPW | 1 22WVPK | | 122GDRD | 1226740 | 1226חפס21 | 1226980 | 1216431 | ; | 122WNDM | 122WAPW | ; | : | : | ; | ; | i | 1 | ; | ; | 121CARV | ; | ; | 1 22CRPV | 1225447 | : | | SEG.
NO. | | , | 1 6 | 3 6 | 5 5 | • | ٥. | | | 0.1 | 01 | 0.1 | 0
] | | | 0.1 | | 0.1 | 0] | | 01 | | 0 1 | 0.1 | ت | | 91 | 01 | ٥] | 0 | 01 | 01 | 0. | ٥, | | 91 | 0 | o
I | 10 | ; | ī, | | LONS-
1-
Tude | | ţ | | ט
ניני | 119 32 02 | | 119 33 38 | | | 9 34 | 119 33 23 | 119 21 05 | 1,5 | | | 119 14 02 | | 119 02 29 | 02 | | 118 59 59 | | 4 | 119 37 10 | 34 | | 62 6 | 62 | 119 24 47 | 30 | 30 | 30 | 119 30 11 | 9 30 | | 119 31 49 | 62 6 | 119 30 54 | 62 | ć | 50 62 6T1 | | L A T –
I –
TUNE | | 5 | , , | , , | 47 10 07 | • | 47 19 23 | | | _ | 47 17 45 | 47 18 17 | 18 | | | 47 15 53 | | 47 20 31 | 20 | | 47 17 45 | | 56 | 47 24 14 | 56 | | 25 | 52 | 47 25 35 | 25 | 52 | | | 54 | | 41 23 13 | 23 | 47 22 31 | 21 | 5 | 4/ <3 18 | | LOCAL
Inent-
I-
FIFD | | | 70.80.17.77.17 | 10201-12012 | 21/20E-13E01 | | 21/24F-16903 | | | 21/24E-21E01 | 21/26E-28A01 | 21/295-19502 | 21/245-23901 | | | 21/2AE-36P01 | | 21/3nE-03F01 | 21/305-03502 | | 21/30F-23J0101 | | 22/25E-05401 | 22/255-13,02 | 22/26E-04C02 | | 22/26F-12901 | 22/26E-12902 | 22/26F-12403 | 22/26E-12C01 | 22/24E-12002 | 22/245-12501 | 22/24F-12F02 | 22/24E-13401 | | 22/246-2340] | 22/24F-24006 | 22/24F-25401 | 22/24E-36801 | | 10251-4/2/22 | | POTAS-
SIUW.
DIS-
SOLVED
(MG/L | | 3.0 | 2.0 | | | 4 | ď | ָ
ה
ה | | | 4.6 | | v. |) v | • • | v ₩ | | | | . 0 | 0 | 11 | 11 | 5.0 | 2.0 | 1.7 | 2.0 | 8.6 | | 9. 6 | 0 | 20 | 5,5 | 38 | 'n. | 0.4 | 6. 3 | 47 | 0 | 5.0 | ۶. | 0. | |---|-------|--------------|--------------|--------------|--------------|----------------------------|--------------|-------------|-------|--------------|--------------|----|--------------|--------------|-----|--------------|---|------------|-----------------|--------------|------------|---------------|----------|--------------|---------------|--------------|----------|--------------|--------------|--------------|--------------|--------------
--------------|--------------|--------------|------|--------------|--------------|--------------|--------------|----------|--------------| | SODIUM
AD-
SORP-
TION
RATIO | | 1.0 | r. | 4 | - | 1.2 | 4 | • | • | • | | | 1.0 | •. | | 4. | 1 | 2. | 4 | 5.6 | 0 i | 3.5 | 8,6 | | 5. | | 4. | 3.5 | 6.5 | 1.9 | 12 | 9.1 | 7.9 | • | 6 | ្ម | ۲. | r, | ď | | | 1.1 | | PERCENT
SOJIUM | | 33 | 21 | - | , r | 36 | 66 | 3 6 | 7 6 6 | 2 6 | 16 | | 00 c | ט ני | | 15 | , | 10 | 4 (| 52 | 59 | 65 | 19 | 19 | 55 | 17 | 16 | 74 | 4 | 35 | S, B | 72 | ď | 7.3 | 18 | 21 | 5¢ | 1.7 | 1.1 | 21 | 20 | 35 | | SONTUM.
DIS-
SOLVED
(MG/L
AS NA) | | 25 | 12 | | . 40 | 25 | ď | 7 5 | 1 . | | 25 | ; | ¢ ; | 0 0 | ` · | 7.8 | • | 0.1 | 5. | 60 1 | m i | 55 | | | oc. | 6.1 | 1 | 4.5 | 064 | 7.1 | 1120 | 320 | a
r | 1000 | 74 | 7.6 | 15 | 12 | | 17 | <u>د</u> | * | | MAGNE-
SIUM.
DIS-
SOLVED
(MG/L
AS MG) | | | 12 | | 0 | 10 | 2 | 4 - | | 2 . | 31 | | m 0 | C 11 | ה | 7.9 | , | ທູ ເ
ແ | ο · | 7. | o .
m (| 9. 2 | 4.5 | 25 | 4 | 6.1 | ρ.
1 | 33 | 140 | 35 | 420 | æ | 7.7 | 6 | ٠, - | ٧. | 12 | | | 4 | 16 | 25 | | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | | 16 | 19 | 30 | | S 2 | ** | 14 | | 11 | 63 | i. | 3. | 7 7 | | 53 | | <u>ک</u> : | 910 | 25 | 50 | 9 | 15 | 64 | 14 | 15 | 20 | 7.0 | 220 | 57 | 2.2 | 53 | 4 | 150 | 4 | S | 50 | 31 | Ē | 50 | 34 | 17 | | HARD-
NESS•
NONCAR-
FONATE
(M9/L
CACO3) | FUALE | c | c | 0 | · C | . 0 | c | • | | • | 33 | • | 0 1, | n 0 | à | , 0 | • | 0 (| 0 (| 0 | 0 0 | o | 0 | 53 | c | 4 | 16 | 105 | 478 | 69 | 455 | 0 | c | 0 | 12 | - | 0 | 0 | 17 | 0 | 0 | c | | HARD-
NESS
(WG/L
AS
CACO3) | | 6 | 16 | 137 | | 6 | 001 | | 2 - | 0 | 285
285 | | 141 | 301 | | 106 | • | 0 | # (| 2/ | φ.
Υ α | 0د | 47 | 213 | 63 | 63 | 83 | 305 | 1126 | 274 | 1735 | 248 | 23 | 749 | 16 | 76 | 66 | 123 | 131 | 130 | 151 | 26 | | COLI-
FORM.
FFCAL.
UM-W=
(COLS./
100 WE) | | 1 | ! | ; | 1 | ۲, | : | : 1 | | : 1 | ₽ | | ! | 1 | | ; | | ; | ! | ; | ! | : | ; | ; | ; | 1 | ; | ; | ! | ; | 1 | ! | ; | 1 | ! | ; | ! | ; | ; | ł | + | • | | DATE
OF
SAMPLE | | 5.0 | 2-0 | 0-0 | , | 83-03-18 | 90-0 | - | | 7 6 | 83-03-17 | - | 82-10-28 | | 10 | 82-01-24 | | 83-03-18 | -0
0 | | 5 | ĺ | 83-05-18 | 79-05-24 | 60-10-19 | 82-09-09 | 83-05-17 | 56-03-06 | 52-01-15 | 52-64-11 | 53-01-53 | 53-01-23 | 2-01 | 2-07 | 51-05-00 | 3-09 | 22-00-00 | | | 82-07-27 | | | | LOCAL
I DENT-
T-
FIFD | | 21/26E-08~01 | 21/24F-08401 | 21/26F-15F01 | 21/26F-15H01 | 4
3
4
3
4
1 | F1245-145719 | 50.01 | | 21/26F=21FA1 | 21/26F-28A01 | | Z1/Z#F=19F0Z | 10/52-202/10 | | 21/29F-36901 | | | Z1 / 30£ -03E01 | 21/3nE-03E02 | | 1/301-/300101 | | 22/25F-05401 | 22/25F-13 102 | 22/245-04002 | | 22/26F-12a01 | 22/245-12302 | 22/26E-12403 | 22/24E-12C01 | 22/24E-12C02 | 22/265-12501 | 22/26F-12F02 | 22/24E-13401 | | 22/26E-23401 | 22/24F-24906 | 22/26F-25w01 | 22/24F-36401 | | 22/27E-19401 | | FLUO-
PINE.
DIS-
SOLVED
(MG/L | | 1 1 2 5 5 | w ! * ! m | พักจรก | ง
เพาะ
เพาะ
เพาะ
เพาะ
เพาะ
เพาะ
เพาะ
เพาะ | 1.4.6.0 | w | 11000 |
Wada I | |---|-------|--|--|--|---|--|--|--|---| | C4LO-
RIDE.
DIS-
SOLVED
(WG/L
AS CL) | | 0 | 4.0
0.4
0.7
0.0 | 7.6
26
27
37
1.8 | 2.5
5.0
25
25
20 | 20
30
3.2
7.3 | 45
540
48
385
150 | 9.9
700
2.3
8.9 | 8.5
11
5.1
6.1 | | SULFATE
DIS-
SOLVED
(MS/L
AS SO4) | | 51
41
81
81 | 11
10
10
8 | 22
31
87
130
14 | 2 0 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 34
42
45
45
10 | 1140
150
150
150
150 | 940
19 | C 4 R C E | | ALVA-
LINITY
LAB
(MG/L
AS
CACO3) | ٠ | 128 | 255 | 96 | 90
105
110 | 172 | 11111 | 11111 | 145 | | ALKA-
LINITY
FIELD
(MA/L
AS
CACO3) | | 163 | 123
123
121
112 | 107
189
213 | 1 111 | 150 | 197
648
205
1280 | 172
910
4.0
75 | 131 | | CAP-
RONATE
IT-FLD
(MG/L
AS
CO3) | | 00 | 11110 | 61110 | 5.00 | 13 | | 11111 | 11001 | | CAR-
RONATE
FET-FLD
(M9/L
AS CO3) | GDANT | ° | 0 00 | 000 | ° | ° | 30.1 | - 0 | 00110 | | BICAR-
BONATE
IT-FLD
(WG/L
AS
HCO3) | |

156
176 | 304 | 188 | 104
132
145
124 | 133

74
88 | 11111 | 11111 | 180 | | RICAD-
RONATE
FFT-FLD
(MG/L
AS | | 130
130
192 | 150
150
147
130 | 130
230
250 | 118 | 106 | 240
790
250
936
570 | 210
1110
3
92
224 | 139 | | nate
nf
Sample | | 55-07-22
55-07-22
50-04-29
82-07-27
83-03-18 | 42-04-25
55-07-22
60-10-19
55-07-22
83-03-17 | 82-07-26
51-04-25
60-10-19
61-05-03
82-07-26 | 83-03-19
60-10-19
82-09-08
83-05-18
82-69-04 | 83-05-18
78-05-24
50-10-19
82-09-09
83-05-17 | 56-03-06
52-07-15
52-04-11
53-01-23 | 52-07-15
52-07-15
51-05-09
53-09-00
52-00-00 | 52-06-00
71-09-24
82-07-27
83-05-17
55-07-22 | | LOCAL
INFNT—
I-
FIFR | | 21/24F-08W01
21/24F-09W01
21/24F-15F01
21/26E-15401 | 21/26E-16903
21/26E-21E01
21/26F-28A01 | 21/29F-19F02
71/29E-23Dn1
21/29E-36901 | 21/30F-03 <u>5</u> 01
21/30F-03F02
21/30F-23J0101 | 22/25F-05401
22/25F-13J02
22/24E-04C02 | 22/26F-12301
22/26F-12302
22/26F-12303
22/26F-12C01
22/26F-12C02 | 22/24E-12F01
22/24F-12F02
22/24F-13401
22/24F-23401 | 22/24-24-006
22/24-25-401
22/245-36-01
22/27-1-19-01 | | NITRO-
GEN+
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | | | ; | : | 01. | 01.5 | ; | ! | : | 5.6 | 0 | ; | ; | 1 | •55 | 7 | n (| 17. | . 15 | <.10 | <.10 | ; | ! | 1.5 | 4.0 | ; | ; | ! | : | : | ; | ! | 1 | ; | ; | ; | : | 98 • | 1.1 | | |---|----------|------------|--------------|--------------|--------------|--------|--------------|--------|--------|------------------------------|-----------|--------------|----------|--------|--------------|--------|-----------|--------------|--------|----------------|--------|----------|---------------|---------|--------|----------|----------|--------------|----------|----------|---------|---------|----------|-----|--------------|--------------|--------------|--------------|---------|---------------| | NITRO-
GEN.
NOZ+NO3
TOTAL
(MG/L | | ; | ; | • | : | ; | ; | ; | ! | 11 | ļ | : | 1 | ; | ; | | } | ; | ; | 1 | ; | 4.4 | ; | ; | ; | : | : | : | ; | ; | ; | ; | ; | ; | : | ; | 3.7 | ; | ; | : | | NITRO-
GEN.
VITRATE
TOTAL
(MG/L
AS NO3) | | ! | : | 4.1 | ; | ! | 1.4 | ; | 2.1 | ! ! | i | ٥ | 2 | | | |)
(| : | ; | ; | ; | ; | 1.9 | ! | ; | .60 | ; | ; | ; | : | ! | ; | 00. | .01 | 6.0 | 2,5 | • | ; | ; | : | | SOLIDS.
SUM OF
CONSTI-
TUENTS.
DIS-
SOLVED | | 193 | 168 | 233 | 216 | 923 | 200 | 187 | 366 | 194
406 | 770 | ; ;
; ; | 391 | 493 | 137 | 130 | 170 | 2 6 | 292 | 27.8 | 594 | 311 | 131 | 1 | 146 | ł | ; | ! | ; | : | ; | i | ì | ; | ! | ; | 240 | 232 | 259 | 220 | | SOLIDS. RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) | F | 201 | 177 | 233 | : : | ! | 197 | 902 | 193 | 195 | į | 282 | 407 | 527 | ; | ļ | 177 | : 1 | ; | i | ; | 347 | 132 | ! | ! | 568 | ; | i | ! | ! | ; | ; | 278 | 152 | 212 | ; | 322 | , i | ; | 236 | | SILICA.
DIS-
SOLVED
(MG/L
AS
SIO?) | TNAFA | 46 | 4.5 | ሚ | ر
0 ر | r
r | 56 | 50 | ን
የ | 5.
7.0 | Ç, | ; | 37 | 0 | 23 | c | U 4 | 90 | 20 | 89 | 19 | <u>ئ</u> | 64 | 48 | 44 | ; | ; | ; | ! | : | ; | • | ! | ; | : | ; | ላ | in
ec | ٦.
8 | s
e | | UATE
OF
Sample | | 5-07 | 2-01 | 0-04 | 42-07-27 | . O | 2-04-2 | 5-01-5 | 0-10-1 | 55-07-22
83-03-17 | 2-01-5 | 1-04-7 | 60-10-19 | 1-05-0 | 10- | 1-00-6 | 1 0 0 1 0 | 87-09-0R | 3-95-1 | 5-09-0 | 3-05-1 | 8-115-2 | 60-10-19 | 5-09-0 | 3-05-1 | 9-0 | 0 | 52-04-11 | - | 3-0 | 2-07 | -01 | 51-05-00 | 3-0 | 2-00 | 52-06-00 | Ġ | 82-07-27 | ~ | 5-10-5 | | LOCAL
105NT-
1-
FIER | | 21/2408401 | 21/26=-04/01 | 21/25E-15E01 | 21/265-15401 | | 21/265-16803 | | | 21/265-21601
21/265-28A01 | /205-1050 | 21/285-23001 | | | 21/28£-36901 | | | 21/305-03502 | | 1/305-23 10111 | | 2/255-0 | 22/25=-13,102 | 2/265-0 | | 2/265-12 | 2/265-12 | 22/26E-12803 | 2/265-12 | 2/26E-12 | 2/265-1 | 2/265-1 | ı, | | 22/26F-23401 | 22724F=24006 | 22/24F_25M01 | 22/26F-36801 | | 22/275-194101 | | LOCAL
IDENT—
I FIFP | nate
ne
Sample | IRON• TOTAL RECOV- ERABLE (UG/L | IRON.
DIS-
SOLVEN
(US/L
AS FE) ' | MANGA-
NESE,
TOTAL
PFCOV-
ERABLE
(UG/L
AS MN) | MANGA-
NESE+
DIS-
SOLVED
(UG/L
AS 4N) | |---------------------------|----------------------|---------------------------------|--|---|--| | | GRANT | _ | | | | | | | | | | | | 1/26E-08M0 | 5-11-5 | 10 | ; | : | ; | | 1/26E-09N0 | 5-01-5 | 10 | | ; | ; | | 1/26E-15F0 | 2-90-0 | 40 | ; | ; | ; | | 21/26E-15H01 | -107- | ; | 62 | ; | 15 | | | 3-03-1 | ! | 54 | 1 | 21 | | 21/25E-16R03 | 2-00-2 | 04 | ; | ł | ; | | | 5-10-5 | 20 | ; | ; | ; | | | 0-10- | 30 | ; | ; | ; | | 1/26F-21F0 | 5-0-5 | 2 | ; | ;
| ; | | 21/26E-28A01 | R3-03-17 | 1 | 7 | ; | <u>.</u> | | 1,306.1050 | 6.44.0 | 1 | • | | r | | 21/23E-33001 | 50.101.25 | 1 1 | D (| 1 | v (| | 1/525-5300 | 2-50-1 | 1 4 | • | ; | : | | | | 0 7 | | : | • | | 0000 | 1000 | 00 | ; ` | ; | ; ' | | <1/285-36801 | 2-10-2 | ; | c | ! | V | | | 3-03-1 | ; | Ŋ | ; | 7 | | 1/30E-03E0 | 0-10-1 | 150 | | ; | ; | | 21/30E-03F02 | 2-00- | | | 1 | Ŋ | | | 3-05-1 | ; | ξ> | ; | ٣ | | 1/305-23J0101 | 0-60 | ! | 60 | 1 | _ | | | | | í | | 1 | | | 3-05-1 | ! 6 | _ | 1 5 | S | | מיני היהורייי | 71111 | 00 | : | 012 | : : | | 22/25E-1300C | 1 1 0 1 1 0 | <u> </u> | ; ^ | 1 1 | ۰ : | | 27.63.79 | 83-05-17 | : ; | - 2 | : | | | | | | : | | | | 2/26E-1290 | 6-03-0 | <10 | ; | ; | ; | | 726E-1290 | -10 | ; | ; | ; | ; | | 2/26E-12H0 | 2-04-1 | ; | ; | ; | ! | | 2/25E-12C0 | 3-01-8 | ; | ; | ; | ; | | 2/26E-12C | 3-01-5 | ; | ; | ; | ; | | 2/26F-12F0 | 2-07-1 | : | ; | ; | ; | | 22/26F-12F02 | 7-07- | ; | ; | ; | ; | | 2/26F-13MO | 1-05-0 | ; | ; | ; | ; | | | 3-0-6 | ; | ; | ; | : | | 22/26E-23Mn1 | 52-00-00 | ; | 1 | 1 | 1 | | | | | | | | | 77/25E-74005 | 2-06-0 | | 1 | 1 5 | ! | | ス/ CやEーご5MO | 7-50-7 | 0061 | ; • | 02> | | | // KAR - 36HU | シーノ ローン |) i | ניי, | 1 1 | י ר | | 22/27E-10M01 | 73-02-11
55-07-22 | ; = | : | 1 1 | ۱ ۱ | | 2/// | 2-10-0 | Α. | ! | 1 | <u> </u> | Table 2.--Continued | TEMPED-
ATURE
(DEG C) | | 18.4 | 17.1 | ון אן
היקו | 14.0 | 12.5 | 16.0 | 14.0 | 19.6 | 12.0 | 11.0 | 50°3 | 15.5 | : | 19.2 | 18.5 | 17.7 | 13.1 | ; | 14.0 | |---|-------|-----------------|--|-----------------|----------|--------------|--------------|-----------------|--------------|--------------|----------|-----------------|----------|--------------|-----------------|-----------------|----------|--------------|---------------|-----------------| | SH
(STAND-
ARD
UNITS) | | 8.2 | | 7.7 | 7 · B | 7.7 | 7.2 | 7.4 | 8.2 | 7.6 | 7.6 | 7.9 | 8.0 | 7.4 | 8.0 | 7.8 | 8.0 | 7.8 | 7.9 | 7:9 | | SPF-
CIFIC
COV-
DUCT-
ANCE | | 198 | 175 | 1370 | 626 | 405 | 1 | ; | 341 | 465 | 389 | 261 | 255 | 427 | 275 | 305 | 258 | 100 | 595 | 501 | | ELEV. OF LAND SURFACE DATUM (FT. AROVE | | 1200.00 | 1200.00 | 00. | ; | ł | : | : | • | 1290.00 | ; | 1854.00 | 1854.00 | • | 1590.00 | 1610.00 | 1610.00 | 1805.00 | 1885.00 | • | | DEPTH
OF
WELL•
TOTAL
(FEET) | | 345 | დ (
ტ ი | 120 | 120 | 170 | ŧ | 192 | 552 | 45 | 42 | 830 | R30 | 187 | 935 | 550 | 550 | 242 | 220 | 165 | | DATE
OF
SAMPLE | | 82-01-28 | 83-03-17 | 60-10-09 | 61-05-03 | 71-05-20 | 54-08-11 | 54-08-11 | 71-09-28 | 40-10-19 | 61-05-03 | R2-07-27 | A3-03-17 | 51-04-25 | R2-07-27 | 82-07-27 | R3-03-17 | R2-07-27 | R2-07-27 | 62-10-31 | | 6F0-
L0610
UNIT | TNAGR | ารรูยกุลก | 1226195 | 1216984 | 1210497 | ; | : | ; | 121CaRV | ; | ł | 122C3RV | 122CaRV | : | 12267RD | 1226029 | 1226090 | 122*NPW | 122WVD4 | 1 | | SEQ. | | 10 | 5 | . | <u>.</u> | ٥] | <u>-</u> | 01 | 6 | 01 | | 0.1 | | 0. | ر، | 01 | | 0.3 | 2 | 5 | | _AT- LONS-
I- I-
TUDE TUDE | | 23 30 119 24 33 | | 22 11 119 29 52 | | 44 119 15 | 29 119 14 | 25 28 119 19 00 | 03 119 18 | 02 118 59 | | 30 45 119 24 38 | | 50 119 15 | 29 27 119 11 23 | 36 32 119 15 52 | | 54 119 09 | 18 119 04 | 55 42 119 02 11 | | ۲ ۲ | | 47 2 | , | | | | | 67 2 | | | | 67.3 | | | 2 14 | 47 3 | | | 7 4 7 | | | LOCAL
Inent -
I -
FIF4 | | 22/275-22401 | יייייייייייייייייייייייייייייייייייייי | FUGUE-316/66 | | 22/28E-03401 | 22/28E-09001 | 22/29F-09501 | 22/28E-28301 | 22/308-13401 | | 23/27E-10901 | | 23/29E-36E01 | 23/295-16501 | 24/28E-03901 | | 24/29F-27501 | 25/30F-05! 01 | 28/30E-15E01 | Table 2.--Continued | POTAS-
SIUM.
DIS-
SOLVED
(MG/L
AS K) | | 5,1 | 5.1 | 7.2 | 0 | 8.0 | 7.1 | 9.9 | A.6 | ۴,3 | 7.5 | 6.1 | 7.1 | 6.9 | 4.7 | 5.4 | 5.1 | 6.4 | 9.5 | 6.4 | 9.6 | |--|-------|--------------|----------|--------------|--------------|----------|--------------|--------------|--------------|--------------|--------------|----------|--------------|----------|--------------|--------------|--------------|------------|--------------|--------------|--------------| | SODIUM
AD-
SORP-
TION
RATIO | | 1.6 | 1.9 | 2.1 | 1.3 | 5.9 | 1.0 | Φ. | 6. | 7.4 | 1.3 | 1.4 | 1,1 | 1.1 | 1.5 | 1.4 | 6 | ٠ <u>.</u> | 1.7 | 1.3 | 1.2 | | PERCENT
SO'LUM | | 51 | 57 | 51 | 50 | 45 | 28 | 54 | 22 | £4 | 33 | 36 | 35 | 34 | 31 | 0 \$ | 62 | 28 | 36 | 30 | 53 | | SONTUM.
DIS-
SOLVED
(MG/L
AS NA) | | 45 | 96 | 0 7 | 91 | 110 | 70 | E. | 30 | 36 | 37 | 46 | 25 | 22 | 32 | 82 | 5 | 19 | 55 | 43 | 35 | | MAGNE-
SIU4,
DIS-
SOLVED
(MS/L
AS MS) | | c. 4 | e, | 8.1 | 5.R | 92 | 15 | 19 | 76 | 6 | 15 | 11 | σ•
α | 6.0 | 17 | 8.6 | 11 | 11 | 56 | 23 | 1,9 | | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | | 11 | 8.5 | 16 | 145 | 10 | 33 | 28 | 20 | 25 | 37 | 32 | 19 | 19 | 33 | 19 | 21 | 21 | 39 | 46 | 4 0 | | HADD-
NESS.
NONCAP-
BONATE
(MG/L
CACO3) | TNAGA | c | c | c | 343 | 23 | 0 | 0 | 52 | c | 0 | O | C | 0 | 0 | 0 | 0 | 0 | 7.0 | 37 | 35 | | HAND-
NESS
(MG/L
AS
CACO3) | | 44 | 36 | 73 | 642 | 282 | 144 | 148 | 524 | 96 | 154 | 125 | 7 α | 35 | 152 | 83 | er
er | 96 | 205 | 210 | 174 | | COLI-
FORM.
7.7
UM-MF
(COLS./
100 ML) | | ; | ⊽ | ! | ; | ; | ; | ; | ; | ; | : | ; | ! | <u>.</u> | ; | ; | : | 7 | ; | ; | ; | | DATE
OF
SAMPLF | | 42-107-24 | 43-03-17 | 20-04-00 | 60-10-16 | 61-05-03 | 71-05-20 | 54-08-11 | 54-04-11 | 71-00-58 | 61-01-09 | 61-05-03 | 42-07-27 | 83-03-17 | 51-04-55 | 82-07-27 | R2-07-27 | 83-03-17 | 92-07-27 | 42-17-27 | 62-10-31 | | LDCAL
INENT-
I-
FIER | | 22/27E-22401 | | 22/276-23-01 | 22/27F-30P03 | | 22/2AF-03K01 | 22/24E-09001 | 22/28E-09001 | 22/28E-28301 | 22/30F-13401 | | 23/27E-10401 | | 23/24E-36E01 | 23/295-16501 | 24/24E-03301 | | 24/29F-27001 | 25/30F-05_01 | 28/30E-15E01 | Table 2.--Continued | LOCAL
Inent-
I-
Fifp | DATE
OF
SAMPLF | AICAR-
AONATE
FFT-FLD
(MG/L
AS | AICAR-
HONATE
IT-FLD
(MG/L
AS
HCO3) | CAR-
BONATE
FET-FLO
(MG/L
AS CO3) | CAR-
HONATE
IT-FLD
(MG/L
AS | ALKA-
LINITY
FIELD
(MG/L
AS | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE.
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE.
DIS-
SOLVED
(MG/L
AS F) | |-------------------------------|----------------------|--|---|---|---|---|---|---|---|--| | | | | | TNAPA | | | | | 1 | | | 22/27F-22401 | 82-07-26 | ; ; | 98 | 1 1 | 0.0 | 1 1 | 75 | 81 | 2.8 | ۲. | | 22/27F-23901
22/27E-30003 | 50-04-00 | 172 | 11 | 00 | : : : | 141 | 11 | 428 | 50.1 | . 0, 4 | | | 61-05-03 | 316 | ! | 0 | : | 520 | ! | 216 | 54 | 6 0 | | 22/29F-03K01 | 71-05-20 | 205 | ; | 0 | ; | 148 | ! | 30 | 8.0 | *. | | 22/245-09001 | 54-04-11 | 200 | : : | : : | : : | 164 | : : | 4 u | 1.4
2.5 | 1 | | 22/28F-28001 | 71-09-28 | 194 | : : | 0 | : : | 159 | : : | ĹΚ | ر
م | i v | | 22/30E-13H01 | 60-10-16 | 228 | ! | C | : | 187 | ! | 27 | 9.8 | | | | 61-05-03 | 202 | ; | C | ; | 156 | ; | 23 | 8.5 | œ, | | 23/276-10901 | 82-07-27 | ! | 135 | ; | 0. | : | 103 | 5, | e 6 | Æ, I | | 73/285-36501 | 51-04-25 | 220 |) <i< td=""><td>! 0</td><td>· ;</td><td>180</td><td>) !
!</td><td>€ ₹</td><td>14.3
2.43</td><td>- v</td></i<> | ! 0 | · ; | 180 |) !
! | € ₹ | 14.3
2.43 | - v | | 23/29E-16E01 | 82-07-27 | : | 143 | 1 | 0. | ; | 139 | | 0.4 | . • | | 24/28F-03=01 | 82-07-27 | ; | 158 | : | ٥. | : | 132 | - | 3.4 | 4. | | | 83-03-17 | ; | 179 | : | ٥. | ; | 126 | 13 | 3.5 | ⁴. | | 24/29F-27001 | 82-01-27 | ; | 149 | • | ۰. | ; | 135 | 54 | 65 | | | 25/30E-05L01 | 82-01-27 | ; | 707 | ; | 0. | ; | 173 | Ф | 35 | 5. | | 28/306-15501 | 62-10-31 | 159 | ; | C | ; | 134 | ; | 0 | 12 | œ | | NITRO-
GEN•
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | | 6.0 | : | ; | ! | ł | ; | ; | ; | : | ; | .15 | <.10 | ; | <.10 | .32 | .29 | 12 | 4.1 | : | |---|----------|--------------|--------------|--------------|----------|--------------|--------------|--------------|--------------|--------------|----------|--------------|----------|--------------|--------------|--------------|----------|--------------|--------------|--------------| | NITRO-
GEN•
NO?+NO3
TOTAL
(MG/L
AS N) | | ; ; | 1 | 1 | ; | 1.7 | 1 | ; | .38 | ; | : | : | : | ! | : | ; | ! | ; | ; | ! | | NITRO-
GEN•
NITPATF
TOTAL
(MG/L | | 1 1 | 00. | 3.1 | 5.9 | ; | ; | ł | ! | 13 | 3.2 | : | ; | 1.2 | ! | ; | ; | ! | ! | 6.1 | | SOLIDS,
SUM OF
CONSTI-
TUENTS,
PIS-
SOLVEN
(MG/L) | | 168 | 523 | 1009 | 651 | 261 | ; | : | 267 | 276 | 24.8 | 206 | 509 | ; | 216 | 208 | 215 | 341 | 383 | 319 | | SOLIDS. PESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) | - | 1 1 | 220 | 1060 | 999 | 274 | i | ; | 284 | 596 | 256 | 1 | ! | 586 | : | ; | 1 | ! | ! | : | | SILICA.
DIS-
SOLVED
(MG/L
AS
SIP?) | 60 A 11 | 54 | 6.4 | 41 | 4.1 | 4 0 | ; | ; | 7.4 | 30 | 33 | 7,6 | 47 | ! | 57 | 56 | 54 | 64 | 64 | 32 | | DATE
OF
SAMPLE | | 82-07-26 | 20-04-00 | 60-10-19 | 61-05-03 | 71-05-20 | 54-08-11 | 54-03-11 | 71-09-28 | 60-10-10 | 61-05-03 | 82-07-27 | A3-03-17 | 51-04-25 | 12-10-28 | 82-07-27 | 83-03-17 | 82-01-21 |
82-01-21 | 62-10-31 | | LOCAL
IDENT-
I -
FISP | | 22/275-22401 | 22/27E-23901 | 22/27F-30P03 | | 22/29E-03K01 | 22/24E-09C01 | 22/28E-09501 | 22/285-23401 | 22/30E-13401 | | 23/275-10801 | | 23/28E-36F01 | 23/29E-16E01 | 24/295-03401 | | 24/295-27001 | 25/30E-05L01 | 29/305-15501 | Table 2.--Continued | MANGA-
NESE•
DIS-
SOLVED
(UG/L
AS MN) | | ₹- | • | 1 | 1 | ; | 1 | 1 | : | ; | 14 | 19 | • | 20 | 5 | ~ | ⊽ | m | ; | |---|--------|--------------|--------------|-----------|--------------|--------------|--------------|--------------|--------------|----------|--------------|----------|--------------|--------------|--------------|----------|--------------|--------------|--------------| | WANGA-
NESE,
TOTAL
PECOV-
EGABLF
(UG/L
AS MN) | | ; ; | 1 1 | : | <20 | ; | ; | <20 | ; | ; | ; | ; | ; | : | ; | ; | ; | ; | <50 | | IRON.
DIS-
SOLVED
(UG/L
AS FE) | | \$3
18 | : | ; | ; | 1 | 1 | • | ; | ; | 17 | 370 | -1 | 31 | 89 | ç | 7 | 4 | 1 | | IPON• TOTAL RFCOV— EPABLE (UGZL AS FF) | | ; ; | 200 | 10 | 9 | ! | 1 | 5.9 | 740 | 062 | ; | 1 | ; | ! | ł | ! | ; | 1 | 696 | | NATF.
NE
SAMPLF. | Tivasa | 82-07-26 | 50-04-00 | 61-05-03 | 71-05-20 | 54-04-11 | 54-00-11 | 71-09-28 | 40-10-19 | 41-05-03 | 82-07-27 | 83-03-17 | 51-04-25 | 82-07-27 | 42-07-27 | 83-03-17 | 92-07-27 | 82-07-27 | 62-10-31 | | LOCAL
10Ext-
1-
FIER | | 22/275-22H01 | 22/275-23001 | , | 22/28E-03K01 | 22/24E-09C01 | 22/235-09001 | 22/28E-28001 | 22/305-13H01 | | 23/27E-10R01 | | 23/28E-36F01 | 23/29E-16Fn] | 24/23E-03R01 | | 24/29E-27P01 | 25/305-05101 | 29/305-15F01 | Table 2. -- Continued | TFMPF3-
ATJRF
(DFG C) | | 16.0 | 76.0 | 40.05 | c m.
• α | 13.9 | 14.2 | 20.1 | 16.1 | 13.4 | 13.6 | 13.8 | 19.9 | 10.8 | 15.1 | 15.3 | 15.0 | 16.4 | 15.2 | 21.4 | 21.1 | 10.5 | 12.7 | 18.3 | 12.2 | , o c | 15.4 | | | a | ١, | 15.0 | 18.9 | 13.1 | 12.9 | 21.9 | \•1- | |---|---------|--------------|----------|----------|------------------------------|----------------|---------|--------------|----------------------|--------------|--------------|--------------|--------------|---------|--------------|---------|--------------|---------------|----------|--------------|------------------|--------------|-----------------------|----------|----------|----------|--------------|----------|---------------|--------------|----------------|--------------|--------------|--------------|---------|--------------|--------------| | STAND-
ABD
UNITS) | | 7.5 | ~ ° ° | - c | . מ
מ | ٠. | • | • | C | 7 | 7.3 | 7.7 | g. | A.0 | 8.0 | c. | e. 1 | σ α | 7.9 | α | R.1 | α : | 7.6 | 4.6 | 7.3 | . r | 7 | , | 7.7 | 4.7 | 7.5 | 7.7 | • | 7.9 | • | α α | • | | SPF-
C1F1C
CON-
DUCT-
ANGF
UMHOS | | 278 | 404 | 404 | 113
191 | 9.80 | 6.55 | 430 | 410
410 | 1140 | 1750 | a60 | 520 | 465 | 4 0 5 | 398 | 326 | 21E | 196 | 24.9 | 250 | 252 | 506 | 504 | 206 | 100 | 194 | 400 | ָ
פּ
פּ | 3.00 | , n | 550 | 310 | 453 | 465 | 375 | 450 | | ELFV. OF LAND SUBFACE DATUM (FT. AROVE NGVD) | | ; | 1 | 1 ! | : : | 1535.00 | 1535.00 | 1813.00 | 1692.00 | _ | 565 | 620 | 1940.00 | 1940.00 | 975. | 975. | 915 | 2020.00 | 6 | 1910.00 | 6 | : | ; | ; | ; | : : | 1 | ł | ! | 1 | 1330.00 | 330. | 1668.00 | 1924.00 | 1924.00 | 1925.00 | ; | | DFDTH
OF
WFLL•
TOTAL
(FFFT) | | 750 | 750 |
 | 570
41 | 725 | 522 | 744 | 595
595 | 201 | 120 | 150 | 737 | 737 | 317 | 337 | 200 | 178 | 178 | , CO.C. | F 0 P | 10 | 341 | 391 | 341 | 195 | 358 | 36.0 | | r . | 00. | 100 | 707 | 145 | 165 | 616
7 | | | DATE
OF
SAMPLE | | 72-07-11 | 72-08-08 | 76-09-13 | 71-05-20 | | | | 82-07-26
83-05-26 | | | | A2-07-23 | | | | | 83-05-31 | 83-06-02 | P2-07-21 | A3-06-20 | 41-04-02 | 61-10 ₁ 13 | 42-10-02 | 64-04-29 | 61-61-64 | 62-10-02 | 06-04-75 | 71011 | 5-03-1 | 2-07-0 | A3-05-31 | 3-0 | A2-01-25 | 3-0 | 6 | 42-02-01 | | 6F0-
LC61C
UNIT | LINCOLN | , | | 1 0 | \#\
\#\
\#\ | 122090 | 1220997 | 122C9RV | 122C9RV
122C9RV | MONMON | 122*NPM | 1224VPW | 122C9RV | 1220997 | 122WNPW | 122WNPW | 122WNPW | 122#NPW | - (| , 10 | ·~ | 1216304 | _ | 121690 | 1210887 | 1616440 | 1 | 1 | ; ; | 1 1 | 1226000 | 12260RD | 1220497 | 122MNPW | 122WNDW | 122CaPV | 17104#7 | | SE0.
NO. | | 5 | | ; | 2 2 | 20 | | 0 1 | - | 2 | ; | 01 | 01 | | ٥. | | 01 | [| | ď | | o] | <u>-</u> | | | 5 | - | | | 5 | : 2 | • | נ | 91 | | <u>.</u> . | 2 | | LONG-
I-
TUDE | | 118 55 44 | | | 118 43 00
118 43 49 | 118 43 32 | | 118 50 24 | 18 41 2 | 36 96 | | 19 30 1 | 118 32 19 | | 118 29 22 | | 119 15 45 | 117 58 28 | | 117 54 52 | | 117 57 28 | 17 53 4 | | | | • | | | 17 53 | 110 55 27 | 5 | 18 50 | 118 37 16 | | 118 41 41 | or
or | | L A T T U D F | | 47 19 25 | | | 47 19 59 | 47 19 47 | | 47 16 27 | 19 2 | 00 91 77 | | 1 P 4 | 47 17 37 | | 47 16 30 | | 47 16 44 | 47 18 35 | | 47 17 49 | • | 47 17 55 | 7 19 4 | | | , | 7 | | | 0 | AL 50 74 | U | 7 22 2 | 47 25 40 | | 47 23 47 | 22 1 | | LOCAL
TOFNI-
T-
FIFR | | 21/315-10402 | | | 21/3/E-08L01
21/3/F-12901 | 21/325-1240101 | | 21/326-31001 | 21/33E-08K01 | 10070-300710 | 10-13-3:5/13 | 21/34F-14401 | 21/34E-21K01 | | 21/346-35401 | | 21/346-27502 | 21/395-14.101 | | 21/385-23101 | :
:
:
: | 21/38F-24401 | 21/30E-09C01 | | | 1000 | 20260-174712 | | | 21/395=09003 | 22/21/21/21/22 | 10.13.115.00 | 22/32F-30001 | 22/334-02401 | | 22/33F-17unl | 22/34E-27E01 | | POTAS-
SIU4.
DIS-
SOLVEN
(MG/L
AS K) | | 6.5 | 10. | • | 0 K R | | • | չ ու ո
ւ գշ բ | • | | 0 N | | 0.0° | | • | • | • • | ٠.٧ | • | • | * • | • | • | w w
œ u | | • | |---|---------|-----------------------|------------------------------|----------------------|--|--------------|--------------|---------------------------------------|--------------|--------------|--------------|--------------|----------------------|--------------|--------------|----------|-------|--------------|----------|-----------|--------------|----------|--------------|--------------|--------------|--------------| | SONTUM
AD-
STAP-
TION
RATIO | | , w , | 1.0 | α,α | 6.00 | 2.0 | ٠. | E (V) 4 | • | 1.1 | ~ ~ | v &c. | 2.1 | 2.1 | ٠. | ه ه | . 4 | ο α | r. | ហ្ | ٠. | 1.2 | 1.6 | מַ מ | 7.6 | • | | PFRCFNT
SOTIUM | | n. ec. ≼
ec. i≎. c | 51
28 | 2.4
1.0 | 4 4 4 | 27 | 2.8 | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 7 6 | 31 | 35. | 25 | 0 ℃
0 ℃ | 56
21 | 92 | 33 | 23 | 31 | 22 | 23 | 27 | 28 | 43 | 25 | 10 | \$ | | SONTUM.
DTS-
SOLVED
(WE/L
AS NA) | | 100 | 7.
7. | 25 | 4 4 4
4 60 60 | 110 | 110 | 7 6 0 | | 2 2 | 6 6 | 57 | 94.0 | 33
13 | | 71 | 6.0 | 7: | 10 | 10 | 2 6 | ۲٤ | 33 | ر. س
د د | A (| 52 | | MAGNE-
SIUM.
DIS-
SOLVED
(MS/L
AS MS) | | 40 | 6.6 | | 1100 | ٦.
4 | 4 , | č 8 7 | | 7 & C | 13 | 16 | G 60 | | • | 7.0 | 4.0 | α α
4 / | A.2 | ۴, | 7 O | 00 | α
α | ۲ - | 7.6 | 4. | | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | | 13 | 15
35 | 36
44 | | 150 | 40 | 0 4 4
4 1- 6 | , , | 52 | 23 | 56 | 15
15 | 14
27 | 18 | 14 | 1 = 1 | E 4 | 16 | 15 | 64 | 4.7 | | 4 4
W W | | | | HAPD-
NESS+
NONCAP-
RONATE
(MG/L
CACO3) | LINCOLN | 0 | | cc | | 414 | 399 | 0 C | , c | 0 | 00 | er: | ec | cc | C | cc | e N | c c | c | == | . 0 | c | 6 | 4
4
7 | C | c | | HAPD-
NFSS
(MG/L
AS
CACO3) | | 30 | 65
149 | 14A | 101 | 629 | 41.4
41.4 | 192
192
186 | 941 | t M | 1111 | • (5) | 75 | 99
100 | 7.7 | 7.1 | 4 4 | 44 | 74 | 69 | 1.31
205 | 200 | Œ | 169 | 41 | 50 | | COLI-
FORM.
FFCAL.
UM-MF
(COLS./
100 ML) | | 1 1 1 | 111 | 1 1 | 117 | ; | ! | 111 | . | ₹ | 17 | ; ; | ∵! | 1 1 | 1 | ; ; | ; | 1 1 | 1 | ; | : : | : | ; | 1 7 | : | : | | nate
of
Sample | | 72-07-11 | 70-10-02 | 92-07-22
83-05-27 | 83-05-03
82-07-25
83-05-25 | Z-LU-c | 3-05-2 | 82-07-23
82-07-23 | | 3-05 | 82-07-22 | 2-07 | R3-0K-02
R7-07-21 | - 36
- 05 | - | 62-10-02 | 5-0 | 61-10-11 | 67-10-79 | 65-03-16 | 82-07-24 | 16-50-68 | 83-04-03 | 83-06-02 | 83-06-03 | 10-50-69 | | LOCAL
TOENT-
I -
FIFR | | 21/315-10402 | 21/325-08L01
21/325-12301 | 21/32F-12H01D1 | 21/3 ² F-31C01
21/3 ³ F-08K01 | 21/37F-24401 | | 71/34F-14401
71/34F-21K01 | 21/345-35401 | Tuecs=1+6/1/ | 21/34F-27902 | 21/38F-14J01 | 21/386-23601 | 21/39F-24401 | 21/39E-09C01 | | | 21/39E-09002 | | 2000 1000 | 72/31E-21F01 | | 22/32F-30001 | 22/33F-02K01 | 22/33F-17401 | 22/33F-27F01 | | LOCAL
INFNT-
I-
FIFR | AATE
OF
SAMPLF | PICAR-
RONATE
FITFLD
(MG/L
AS
HCO3) | ATCAR-
ANNATE
IT-FLD
(MS/L
AS
HCN3) | CAR-
ROVATE
FET-FLD
(MA/L
AS CO3) | CAP-
RONATE
IT-FLD
(MG/L
AS
CO3) | ALKA-
LINITY
FIELD
(MG/L
AS
CACO3) | AIKA-
LINTTY
LAR
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MR/L
AS SO4) | C4LO-
RTNE-
DTS-
S3LVFD
(MG/L
AS CL) | FLUO-
FIFE
FIFE
SOLVED
(MG/L | |---|--|--|--|---|---|---|---|---|---|--| | 21/31F-10w02
1/37F-08L01
1/37F-12¤01 | 72-67-11
72-08-03
72-09-13
70-10-02
71-08-20 | 137
211
110
149
155 | 11111 | eceom | :::::
 111
271
100
471
471 | ::::: | 40000 | 6.2
16
13
8.1
8.7 | E & & & & & & & & & & & & & & & & & & & | | 1/32F-12H01D1
21/37F-31CN1
21/37F-08Kn1 | 82-03-22
83-05-27
83-06-03
82-07-26 | 11111 | 204
234
156
217
225 | 11111 | 00000 | 11111 | 158
184
129
178 | 0 % £ % £ % | 51
40
61 | ww.40c | | 21/34E-249N1
21/34E-144N1
21/34E-21K01 | A2-07-23
A3-05-26
A3-06-03
A2-07-23 | ::::: | 254
270
176
257
285 | 11111 | 0000 | 11111 | 225
214
142
213 | 250
240
250
29 | 250
260
18
18
7.9 | m m m ur vc | | 21/34F-35aN1
21/34F-27002
21/3aF-14JN1 | A2-07-28
A2-05-26
A2-05-27
A2-05-31 | 11111 | 190
197
169
170 | 11111 | 50000 | 11111 | 157
153
150
139 | L E C 4 E | 19
13
9.0
11 | 410, 10, 4 | | 21/34F-23 <u>L</u> 0]
21/34F-2440]
21/39F-09C0] | 83-06-02
82-07-21
83-06-20
61-05-02 | 133 | 156
140
156 | °° | 6.0.0 | 1000 | A 5 C L | ۲۰۰۰
0.۰۰
0.۰۰ | ₩₩₩₩
₩₩₩₩₩ | | | 51/306-09002 | 62-10-02
64-04-29
65-03-15
61-10-11
62-10-02 | | 11111 | ccocc | ::::: | 101
101
402
500
500 | !!!!! | η τ ζ τ τ
0.4 |
 | 40014 | | 21/39F-09C03
22/31F-21F01 | 44-04-29
45-03-14
45-03-16
82-03-24
83-05-31 | 78
71
150 | 308 | ccc | 11160 | 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 740 | | 4 C 4 C C C C C C C C C C C C C C C C C | 44 6 4 6 7 | | 22/32F-3000
22/33F-12K0
22/33F-17V0
22/33F-27E0 | 83-04-03
82-07-25
83-04-02
83-04-03
62-03-01 | 178 | 176
159
176
176 | ° | 00001 | 146 | 142
128
136
142 |
 | 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | Table 2. -- Continued | NITRO-
GEN-
NO2+NO3
DIS-
SOLVED
(MS/L
AS N) | | ; ; | ::: | 1.3 | | <.10 | 21 | 6 | . 36
. 10 | ٠.
د. | •••
• 1 & | رج.
وج. | .57 | ~ . | . Z. | 1 | : | 1 1 | ; | • | : : | : | .13 | °*10 | 11, | • - | ; | |---|----------|--------------|----------------------------------|----------------------|------------------------------|----------|--------------|--------------|--------------|--------------|----------------------|----------------------|----------|--------------|--|--------------|----------|-----------|--------------|----------|----------|--------------|----------------------|--------------|---------------|----------------------|--------------| | NITAO-
GFN•
NO2+NO3
TOTAL
(MA7L
AS N) | | 1.0 | 1.8 | 1 1 | 11 | : | :: | : | 1 1 | 1 | : : | : : | : | : | : : | : | ; | : : | : | 1 | : : | ; | : : | : | ; | : : | : | | NITRO-
GEN.
NITRATE
TOTAL
(MG/L
AS NO3) | | 11 | 1.6 | ; ; | ;; | ; | ;; | ; | ! ! | ; | ; ; | :: | ; | ; | ۶. ا | •20 | .10 | .20 | .20 | | 11 | • | 1 1 | ł | ; | ; ; | .10 | | SOLIDS.
SUM OF
CONSTI-
TUENTS.
DIS-
SOLVED
(MG/L) | | 196
356 | 356
213
279 | 249 | 291
270 | 275 | 966 | et in | 335 | 257 | 230
230 | 233
234 | 147 | | 157 | 146 | 154 | 156
08 | 154 | * (| 125 | 526 | 347
346 | 226 | 257 | 241 | 23A | | SOLIDS. PESIDUE AT 180 DFG. C PIS- STLVFD (WG/L) | OLN | 234
452 | 334
219
274 | 1 1 | :: | ! | 11 | ; | : : | 1 | : : | :: | ; | : | 175 | 147 | 152 | 103 | 155 | 7 | 146 | 236 | : : | : | 1 | ; ; | : | | SILICA.
PIS-
SOLVED
(MS/L
AS | i INCOLN | 74 | 100
42
37 | 4 4 | 4 4
7 4 | 4 4 | 6 K | 41 | 4 4 | c (| y 4 | 4 4
ቢ (ኅ | 44 | . K. | ת ה
מ א | 33 | 44 | ሳ ራ
ያ | 4 4 | : (| 5 F | 36 | 4 t | 4 | . 4
 | 4 L | ŗ. | | DATE
OF
SAMPLE | | 72-07-11 | 72-09-13
70-10-02
71-05-20 | 82-07-58
75-50-58 | 93-04-03
82-07-24 | 83-05-26 | 87-07-58 | P3-06-03 | 43-05-27 | 84-70-58 | 83-07-28
82-07-22 | A3-05-31
A2-07-21 | 50-40-F8 | A2-07-21 | 43-06-20 | 61-10-13 | 62-10-02 | 64-04-29 | 61-10-11 | 20101-20 | 61103116 | 10 | 83-07-26
83-05-31 | 83-04-03 | A 2 - 07 - 25 | A3100104
A3100104 | K2-05-01 | | LOCAL
INFNT-
T-
FIFR | | 21/315-19402 | 21/325-09101
21/325-12901 | 21/32E-1240101 | 21/32F-31C01
21/33F-09K01 | | 21/335-24501 | 21/345-14MAI | 21/34=-21K01 | 21/346-35401 | 21/36F-27PA2 | 21/385-14J01 | | 21/3AF-23L01 | 38. | 21/39=-09001 | | | 21/395-09602 | | | 21/395-09003 | 22/315-21501 | 22/326-30001 | 72/33E-02K01 | ે | 22/33E-27F01 | | MANGA-
NESE.
DIS-
SOLVED
(UG/L | | ::: | 1 1 | 1 | 77 | 7 7 | 24 | S | ~ ₹ | ٦ | ۲; | 4 | 5; | ; - | α | σ | ~ | ע ט | ۲, | ; | ; | : : | : : | ; | 1 | ; | ሆ ው | • | ~ 4 | ι (Λ. | ~ ¦ | | |---|--------|--------------|---------|--------------|----------------|-----------|--------------|--------|--------------|---------|--------------|------|--------------|--------------|-----------|--------------|------|--------------|--------------|-------|------------------|-----------------------|--------------|------------|------------|-----------|------------|---|--------------|--------|------------------------------|--| | MANGA-
NFSE.
TOTAL
PFCOV-
FRABLF
(UG/L
AS MN) | | !! | · <> | 620 | ; | 1 1 | 1 | 1 | ; ; | ; | 1 | 1 | ; | ; ; | ; | ł | ; | 1 | ; ; | <5u | 0 2 0 | ,
,
,
,
, | <50
550 | \
6.F.> | <50
450 | <51 | ; ; | | : : | : | 1 1 | | | IRON.
DIS-
SOLVER
(UG/L
AS FE) | | :: | : : | : | ۳. | · • | 96 | 7 | 010 | ហ | r. | 13 | 6 | ე <u>«</u> | 63 | 36 | 11 | Ξ, | - | : | ; | : : | : : | 1 | ; | ; | C C | • | ث
ش | 10 | 4 ! | | | IPON. TOTAL PFCOV- FOARLE (UG/L AS FE) | J. N | 1 1 6 | 30 | 30 | 1 | 1 1 | ; | i
1 | ; ; | ; | ; | 1 | 1 | : : | ; | ; | ; | 1 1 | <1. | 60 | Ŗ, | 4 4 | 3 6 | i in | 30 | 10 | : : | | ; ; | ; | 25.0 | | | DATE
OF
SAMPLE | NIOUNI | 2-07-1 | | 1-0-1 | 2-07-2 | 3-66-6 | 82-07-26 | 21()16 | 92-07-23 | 3-06- | -20-2 | 3-0% | 2-07- | 43-10-28 | 3-05- | -10-2 | 3-06 | 0-0 | 43-04-02 | 1-10 | 7 | 4 C | 61-10-11 | | 5-03- | 5-03-1 | R2-07-26 | 1 | 3-04-0 | 3-04-0 | 43-04-03
62-05-01 | | | LOCAL
IDENT -
I -
FIFD | | 21/315-10802 | 1/32F-0 | 21/32E-12901 | 21/325-1240101 | /32E-31C0 | 21/33E-09K01 | | 21/335-24801 | 1/345-1 | 21/34E-71K01 | | 21/345-35401 | 21/345-27002 | ,
; | 21/33F-14J01 | | 21/395-23101 | 71/38F-24401 | 1/396 | | | 21/39F-09502 | | | 1/39E-09C | /31F | • | 22/32F-30P01 | 70.077 | 22/33F-17401
22/33E-27F91 | | Table 2.--Continued | 0- TFMPF2-
ATURE
) (DEG C) | | 12. | 13. | 15. | 7.6 15.6 | | .1
11.1
19.5 | . f 15. | .3 16. | .3 12. | .6 12. | .5 | .6 13. | - 4 | .4 | 0 15. | .1 15.7 | .7 | .7 14. | .3 13. | 9. | .7 19 | .7 14. | .2 14. | .3 13. | .5 | 17.1 | .я 12. | 6 6 | 12.9 | | • | .0 12. | ٠,٠ | . 7 | .9 17. | |--|---------|--------------|---------|--------------|--------------|-----|--------------------|--------------|--------|--------|--------------|---------|----------------|----------------|----------|----------------|----------|----------------|--------------|--------|--------------|---|--------------|----------------|--------|--------------|----------------------|---------|--------------|---------|--------|---------------|---------|---|--------------|--------------| | 1C DH
- (STAND-
F APD
SS UNITS) | | | | | 7 092 | | 7 476 | . 6 | 3 7 | 7 | 7 | - 0 | 0 0 | 530 7 | ^ | or. | 315 8 | 5 | 7 | 194 7 | ıc ı | A 10 A 40 | - m | | σc i | r • | 1 007 | | 7 | 350 7 | ~ α | C | oc i | 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | · c | 7 | | FIFV. OF LAND SPE- SUPFACE CIFIC DATUM CON- (FT. DUCT- APOVE ANCE | | 0 | ı. | | : : | | ! ! | ; | 1 | ; | 00.20 | 00°26 | 18.00 | 040.00 | 00.04 | 00.00 | 2190.00 | ٨٥.00 | 50.00 | 020.00 | _ | | 00.000 | 0 | .0 | • | 97.00 | 95,00 | 75.00 | 2175.00 | 75.00 | | 340.00 | 95.00 | 95.00 | 45.00 | | FI
DFOTH SUG
OF DI
WFLL+
TOTAL AF | | _ | 45 179 | 515 | 257
785 | . ! | 747 | 26A | 9.4.P | 248 | _ | . 79 | | 212 20 | ^ | | 510 21 | | | 54 5 | מין | ر
د د | 146 20 | | | | 247 229 | _ | _ | 213 21 | ~ - | - | 101 | 300 23 | . – | _ | | DATE
OF
SAMPLE | | ို | ۶ | 7 | 61-10-13 | | 64-04-29 | 7 | 5 | 2-1 | 2-01-2 | 3-06-0 | 2-07-5 | A2-07-22 | 10-90-68 | 2-07 | A3-06-01 | 2-07 | 2-07 | 9 | 20 | ິເ | Š | 2-3 | 3-0 | 20 | A2-04-02
A2-07-22 | ٦ | 1-05 | 2-0 | 3-06 | | 2-90- | R2-01-21 | 0-90- | -010- | | GEN-
LOGIC
UNIT | LINCOLN | " | 122Wypu | ! | 1 1 | | | ! | ! | ; | NaNM221 | 1224NPW | 122090 | 1220920 | 122090 | 122000 | 122CaPV | 122Wybw | 122CAPV | O | 1226750 | 1226500 | 1224VP4 | S | 5 | 1 224 NPW | 1 2 Swips | 122WIPW | ~ | 1224NPM | Maines | u | 122WNPM | NACHEV
NACHEV | 100MC01 | IPICHOV | | SEO.
NO. | | 5 | | 0.1 | 0.1 | | | 0.1 | | | 0 1 | | 20 | 0.1 | | õ | • | <u>.</u> | ? | | 0 | 7 | . | 0 | | 0 | 0.1 | | 0 | | 5 | 70 | | | • | 01 | | 1 0 N 3 -
1 -
T U 7 E | | 118 35 17 | | 18 30 0 | 6 | | | 118 30 02 | | | 110 20 12 | | 114 22 39 | 118 20 02 | | 118 05 33 |) | 117 59 25 | 2 64 7 | | 118 55 01 | • | | 119 22 40 | | 118 27 12 | 119 13 39 | | 119 10 45 | | 17 67 | ,
- | | 117 53 33 | • | 118 54 03 | | 1 AT-
1 - T
TUNE | | 67 53 49 | | 47 22 24 | 22 1 | | | 47 22 01 | | | 47 24 00 | | 47 23 08 | 47 23 36 | | 47 25 16 | • | 47 25 05 | 2. | | 47 24 38 | 0.00 | i
n | 47 31 00 | | 47 27 35 | 47 28 46 | | 47 27 2A | | 90 | ر.
10 | ; | 10 18 14 | ; | 47 34 33 | | LOCAL
Infint-
I-
Fife | | 72/345-1840] | | 22/34E-26J01 | 22/34F-26901 | | | 22/34E-26002 | | | 22/35F-13401 | | 22/35F-23E0101 | 22/34F-18N0201 | | 22/375-1260201 | 1000001 | 22/38F-0200101 | 22/30F-36401 | | 23/31F-33501 | | 10401-315/12 | 23/35F-03H0101 | | 23/35F-30F01 | 23/34F-13401 | | 23/37E-29F01 | | | 237 344-16401 | | 23/39F-0440] | 10341 316742 | 24/31E-16F01 | Table 2. -- Continued |
POTAS-
SIUM.
DIS-
SOLVED
(MG/L | 4 L C L 4 | 44 W W 4 | ጥ ሊ ሠ ພ ሆ
4 ቁ በ ቁ ቢ | 0, W W V V | ቢሲሲ 4 4
4 | 111
2.5
7.5 | 404-V |
 | |--|--|--|--|---|--|--|--|--| | SODIUM
AD-
SORP-
TION
RATIO | 00000 | @ r @ @ r | 44
ccran |
 | 44
c w - r r | 4 L L L L L | | 4.0
4.0 | | PFR/FNT
SONTUM | 20
10
10
10
10 | 23
27
24
24 | 53
28
24
14
14 | 4 4 4 1 1 4 3 1 1 3 3 3 1 3 3 3 1 3 3 3 1 3 3 3 3 1 3 | 24
73
75
13 | 40
39
11
11
17 | 24
24
27
27 | 66.44
66.44
66.44 | | SONTUM.
NTS-
SOLVED
(MF/L
AS NA) | 4 W A A Q | 60 L L L R | 051
051
05
05
19 | 18
13
14
9.6 | 7 7 7 7 7
- 4 6 6 6 7 | 7.
8.
7.
1.
1.
1. | , , , , , , , , , , , , , , , , , , , | 4 7 0 C C C C C C C C C C C C C C C C C C | | MASNE-
SIUM,
DIS-
SOLVED
(MG/L
AS-MG) | 7. 1. 0. 0. 0. 0. 4. 4. 4. 4. | 13
14
0.0
8.0 | 119
113
134
55 | 22
17
17
11
10
4. | 3.7
3.3
3.4
3.6
1, | 2000
2000
1000 | 71
15
11
11 | 11
9.9
111
111
9.0 | | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | 8 4 6 6 8 8
8 4 6 6 8 8 | 30
22
22
82
82 | 34 4 4 6 6 9 4 4 6 6 9 4 4 6 9 9 4 9 9 9 9 | 58
20
17
37
16 | 27
9.0
8.2
85 | 17
18
53
58
54 | 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 23
12
16
16 | | HARD-
NESS+
NONCAP-
RONATF
(MAZL
CACD3) | LINCOLN
33
28
0 | 0000 | CC 4 O 4 | 0000 | , , ,
, , , , , , , , , , , , , , , , , | 0
52
177
17 | recee | cccc | | HAPO-
NFSS
(WF/L
AS
CACO3) | 135
131
95
95 | 1118
133
95
95
119 | 183
178
146
126
241 | 235
99
92
138 | 137
36
34
336
395 | 108
111
219
248
213 | 205
174
127
122
103 | 103
10P
75
75 | | COLI-
FORM.
FFCAL.
C.7
UM-MS
(COLS./
100 ML) | 7 1 | ::::: | 12121 | 11211 | 21112 | 12121 | 71171 | 11121 | | DATE
OF
SAMPLE | 82-07-23
83-06-01
70-10-02
51-10-13
62-10-03 | 65-03-16
65-03-16
61-10-13
62-10-03
64-04-29 | 82-07-22
83-06-01
82-07-22
93-06-01
82-07-22 | 83-06-01
82-07-22
83-06-01
82-07-21 | 83-06-02
82-06-03
83-06-03
83-06-02 | 83-05-01
83-05-01
83-05-01
83-05-03
83-05-02 | 83-06-02
61-05-02
82-07-72
83-06-02
87-07-21 | 82-05-20
82-07-21
82-07-23
83-05-03
71-01-08 | | LOCAL
JOENT-
I-
FIFQ | 22/74F-18WN]
22/34F-2690]
22/74F-2690] | 22/746-26302 | 72/35F-13401
?2/35F-73E0151
22/36F-18N0251 | 22/37F-12C02N1
22/3AF-02D01D1
22/39F-36401 | 27/31F-33En1
27/77F-10401 | 23/35F-03H01D1
23/35F-30Fn1
23/36F-13V01 | 177F-29Fn1
19734F-12401 | 23/79E-04¤N]
24/71F-14FN]
24/71E-16FN] | Table 2.--Continued | FL UO-
RIDF.
DIS-
SOLVED
(MG/L | |
L. 4 4 N. | 40444 | ***** | " | 4 (4 m m | ռւտան | ֎֎֎֎ֈֈ |
 | |---|---------|--|--|--|--|--|---|--|--| | CHLO-
RIDE.
DIS-
SOLVED
(MG/L
AS CL) | | 17
20
5.2
5.2
8.5 | 11
14
5.0
5.5 | 4 4 . I I S
6 5 1 2 9 9 | 5.1
6.1
6.1 | 38
8.0
9.1 | 11
11
13
13
13
13
13
13
13
13
13
13
13
1 | 26
10
7.7
7.3 | 40 F R R L R C O C | | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | | 44 EL 6 | 34
33
10
10
70 | 8 F C C C | 11
11
0.0
10
10 | | 4 4 4 E E | 22221 | C C E C C C C C C C C C C C C C C C C C | | AIKA-
LINTTY
I AR
(MC/L
AS
CACO3) | | 103 | 11111 | 310
305
142
130 | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 128
133
144
127 | 166
163
157
141 | 140

150
142
135 | 137 | | ALKA-
LINITY
FIELO
(MG/L
AS
CACO3) | | 1115 | 119
123
116
117 | !!!!! | !!!!! | ::::: | ::::: | 197 | 1111 | | CAR-
BONATE
IT-FLD
(MG/L
AS
CO3) | | ç!!! | ::::: | 60000 | 00000 | 16
8.0
.0 | 00000 | 01000 | 00001 | | CAP-
ACVATE
FFI-FLD
(MG/L
AS CO3) | LINCOLN | 11000 | e e o o c | ::::: | ::::: | ::::: | ::::: | ° | ° | | ATCAR-
ANNATE
IT-FLD
(MA/L
AS
HC03) | | 116 | 11111 | 378
381
161
158
206 | 213
190
190
176 | 88
135
161
153
170 | 204
203
177
175 | 172
177
182
161 | 168
177
177
157 | | atcas-
BONATE
FFT-FLN
(MS/L
AS
HC03) | | 1140 | 150
150
143
143
143 | 11111 | 11111 | 11111 | 11111 | 22.8 | 131 | | JATE
OF
SAMPLF | | 82-07-23
83-06-01
79-10-02
61-10-13
62-10-03 | 64-04-29
65-03-16
61-10-13
67-10-03
64-04-29 | 87-07-27
83-06-01
87-07-22
83-06-01
87-07-22 | 43-04-01
82-07-22
43-06-01
82-07-21 | 63-90-68
50-04-08
50-50-68
83-66-68
50-90-68 | 82-07-23
83-06-01
82-07-23
83-06-02
82-07-22 | 83-06-02
61-05-02
82-07-22
83-06-02
82-07-21 | 83-06-20
82-07-21
82-07-23
83-06-03 | | OCAL
 OFNI | | 22/34F-1R401
22/34F-26001
22/34F-26001 | 22/34E-26102 | 22/35F-13401
22/35F-23E0101
22/36F-18N0201 | 22/37F-12C0201
22/3AF-02D0101
22/39F-36401 | 27/31E-33E01
23/33F-10A01 | 23/35F-03H01D1
23/35F-30F01
27/36F-13N01 | 27/37F-29F0]
23/3AF-12A0] | 23/39F-04901
24/31F-14E01
24/31E-16F01 | # Table 2.--Continued | SOLIDS. SUM OF NITRO- NITRO- GEN. CONSII- GFN. GEN. NOZ-NO3 TUENTS. NITRATF NOZ-NO3 DIS- TOTAL TOTAL SOLVED SOLVED (MG/L (MG/L) AS NO3) AS N) | | • | | 1.5 | 178 1.4 194 1.4 | 3.6 | | 0 1.4 | 182 1.9 220 3.2 | | 1 : | 7 1.3 | 320 1.7 | 1 | 4.4 | 1 i | 7.4 | ; | 1 | 1 2 | V C | | • | | | 294 8-4 | - | 17 | | 210 2.1 | ; | ;
; | 176 4.4 | : | | |---|---------|--------------|----------|--------------|----------------------|----------|----------|--------------|-----------------|--------------|------------|----------------|----------------|----------|----------|-----------------|----------------|--------------|---|--------------|--------------|-----|----------------|---|--------------|--------------|---------|--------------|----------|----------|--------------|----------|--------------|--------------|--| | SOLTDS. PESTOUE AT 180 DFG. C DFG. C ALS. SCLVED (WG/L) | LINCOLN | ; | : | εα.
- | 177
198 | 218 | 223 | 181 | 184
219 | ; | ; | ; | ; ; | • | ; | ; ; | ; | : | ! | ; | ; ; | i | : | ; | ; | ! ! | ; | 279 | • | : | ; | ; | ; | ; | | | SILICA.
DIS-
SOLVED
(MG/L
AS
SIO?) | LIK | 4 | 4 | • | 4 4
(; () | 42 | 60 | ,
4 J | 4 4
W & | 47 | . 4
. R | 6 4 | 0 4 | * | 64 | † 4
† 4 | 7.4 | 4 | | | | 4.5 | | | | + 4
+ 4 | | | | 4 | | | 4 | | | | DATE
OF
SAMPLE | | 42-01-5B | 83-05-01 | 70-10-02 | 61-10-13
62-10-03 | 64-04-20 | 65-03-16 | 61-10-13 | 62-10-03 | 2-07-2 | 3-00-0 | 2-10-6 | 93-05-01 | | A3-06-01 | 0 0 | 7-0-6 | 2-07 | | A2+03+0P | T (1 | | 1 | ÷ | | 82-01-22 | 93-06-0 | 61-05-02 | 82-07-22 | 43-06-02 | 8>-07-21 | 83-06-20 | 82-07-21 | R2-07-23 | | | LOCAL
10541-
17-
7768 | | 22/34E-19401 | | 22/34E-26001 | 2/34=- | | | 22/34E-26902 | | 22/35F=13H01 | | 22/35F-23E0101 | TOCOM91-345/50 | יי
יי | , | 26/3/E-1/C0/C01 | 22/38F-0200101 | 22/395-34401 | | 23/31F-33E01 | 23/335-10401 | | 23/35F-03H0101 | | 23/35£-30F01 | 23/365-13401 | | 23/375-29501 | | | 23/3RF-12A01 | | 23/395-04801 | 24/31E-14E01 | | # Table 2.--Continued | MANGA-
NESF.
DIS-
SOLVED
(UG/L
AS MN) | | 32 | m į | : : | ; | ; | ; | i | 1 1 | G
G | 9 6 | 13 | 4 | ľΩ | ٨ | v v | c n | 10 | ŗ | :⊽ | ⊽ | ~ 4 | ır | ~ | en . | | ٠ ٦ | : ; | 7 | m | 52 | 23 | m ; | a | <u>.</u> ! | |---|---------|--------------|------------|--------------|------------|--------|--------|--------------|---|---------------|--------|----------------|--------|----------------|-----|----------------|------------------|--------------|-------|--------------|--------|--------------|----------------|--------|--------------|--------------|--------|--------------|----------|--------|--------------|--------|--------------|----------|--------------| | MANGA-
NFSE-
TOTAL
PCCOV-
FDARLF
(UG/L
AS MN) | | ; | 1 6 | 027 | <50
<50 | <50 | | . <50 |
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\ | | : ; | ; | ; | ; | ; | ! | : : | 1 | ł | ; | ; | 11 | ; | ; | i | : : | ł | ; | ; | ; | i | : | : | ! | 100 | | JRON.
DIS-
SOLVED
(UG/L
AS FE) | | 31 | r (| : : | ; | ; | ; | ! | ; ; | ć | 000 | 2.2 | , " | 10 | 13 | ۲, | 2 | | 4 | · c | e | 4 A | 7 | 14 | 12 | უ რ | ς, | : ; | 1 | 13 | 220 | 200 | 13 | 0 1 | 11 | | 190N.
191AL
850N-
1984E
(UG/L
AS FE) | JLN | ; | 1 0 | <10 | <10 | 7.0 | 69 | 120 | 110 | i | 1 | ! | ; | ; | 1 | ; | : : | 1 | ; | ; | ; | ; ; | ; | ; | ! | : : | ł | ŗ | 1 | ! | ; | : | : | | 50 | | DATE
OF
SAMPLE | LINCOLN | -07-2 | 70-10-07 | 10-1 | -10-0 | 4-04-2 | 5-03-1 | 1-10-1 | 62-10-03 | 0.4.3 | 3-06-0 | 82-01-22 | 3-04-0 | 2-10-2 | 3-0 | 92-07-22 | 0
1
1
1 | 7 | 9-0-6 | 2-09-0 | 3-04-0 | 93-04-02 | 2-11-2 | 3-04-0 | 2-01-5 | 82-07-22 | 3-04-0 | 1-05-0 | 92-01-25 | 3-04-0 | 2-01-5 | 3-04-2 | 82-07-21 | 2-10-2 | 1-01-0 | | 100al
106ar
1-
FIFP | | 22/345-12M01 | 7/34F-2400 | 22/346-26001 | | | | 22/34E-24002 | | 100001-336760 | | 22/356-2350101 | | 22/36E-19N02D1 | | 22/37E-12C02D1 | /3PF-02001 | 22/39E-34H01 | | 23/31E-33F01 | | 23/335-10401 | 23/35E-03H01D1 | | 23/35E-30F01 | 23/34F-13N01 | | 23/37F-29F01 | | | 23/395-12401 | | 23/39E-04R01 | 4/31E-14 | 24/316-14601 | Table 2. -- Continued | LOCAL
IDENT-
I-
FIER | 1 A T - T UNF | L 003-
1-
1U7- | ν.
Θ.
• | 6F0-
L05IC
UNIT | OATE
OF
SAMPLE | 0F0TH
0F
WFLL•
TOTAL
(FFFT) | ELFV. OF LAND SURFACE DATUM (FT. ARNVE | SPF-
CIFIC
CON-
DUCT-
ANCF
WMHOS | SH
(STAND-
ARD
UNITS) | TEMPES-
ATURE
(DFG C) | |---|---------------|----------------------|---------------|-----------------------|----------------------|---|--|---|--------------------------------|-----------------------------| | | | | | LINCOLN | | | | | | | | 24/31E-16E01 | 7 34 3 | 1A 55 0 | 01 | 121CaJV | 71-05-11 | 750 | ł | 272 | 7.7 | σ | | 24/33E-06001 | 47 35 49 | 118 42 15 | 0.1 | 12241PM | P3-06-22 | 185 | 2035.00 | 260 | 7.A | ď, | | 24/345-23101 | 7 33 2 | 1P 29 4 | 2 | 122CARV | P2-07-27 | 70 T | 2249.00 | 265 | ς | 'n | | 24/34F-03h01 | 7 36 4 | 18 15 0 | | 122*NP* | R2-07-21
R3-06-01 | 125
125 | 2340.00
2340.00 | 182 | 7.6 | 17.4 | | 70076 130770 | 7 76 | , | 4 | MONTH C | 70-10-23 | 170 | 2372 00 | 746 | 4 | | | 24/34F-15A07 | 7 34 4 | | - 6 | 226090 | 71-01-14 | 631 | | 231 | | | | 24/34F-16A08 | 47 34 41 | 118 15 27 | 60 | S2WNPW | 71-05-14 | 750 | _ | 738 | • | 7 | | 24/37F-069n] | 7 35 5 | в
11 | 5 | 1 22 WADA | 82-07-21
83-06-91 | 165
165 | 2365.00 | 235
243 | . α.
η α | ۳ ۸
ه ه | | 10016-7767.70 | 71 66 47 | 0.4 0.0 011 | Č | | 61-10-13 | 4 | ; | | 7.4 | LC. | | 247375-01701 | 66 | t | | | 65-10-05 | 400 | - | 161 | 4.7 | | | | | | | | 64-04-59 | 4 00 | ; | 175 | 7.4 | έ. | | | | | | ; | 65-03-16 | 400 | ! | 185 | 7.4 | 8.3 | | 24/37E-21402 | 47 33 45 | 11A 05 15 | 2 | | 61-10-13 | 004 | ; | 180 | 7.6 | • | | | | | | : | 9-0 | 400 | ł | 184 | 7.6 | • | | | | | | ; | 2 | 400 | ; | 184 | 7.1 | 11.1 | | | | | | ; | - | 400 | | 198 | 7.1 | 7.9 | | 24/34E-02501 | 47 36 41 | 117 59 30 | 0.1 | 122WNDW | R2-07-20 | ر:
ه. | 2400.00 | 430 | 7.7 | 6 | | 24/39E-26K01 | 7 32 | 17 50 5 | | ~ | 7-2 | 100 | 440. | 280 | 7.4 | 11.4 | | | | | | " | 3-06-0 | 100 | 440.0 | 266 | 7.3 | _ | | 25/32E-17K01 | 47 39 46 | 118 48 41 | <u> </u> | " | 2-01-5 | 300 | 0.040 | 340 | 7.3 | • | | 25/32F-35001 | 7 36 4 | la 45 l | 7 | 1226000 | 2-09-0 | 1130 | 135.0 | 070 | C. C | ~ - | | 25/336-01901 | 47 41 54 | 118 35 05 | 0.1 | 12244PM | 82-07-28 | 11.34
50 | 2280.00 | 350 | 7.3 | 11.7 | | | | | | 1224NPW | 3-06-0 | ٠.
د | 280. | 370 | 7.4 | | | 25/33E-27A12 | 47 3A 29 | 118 38 22 | . | 122CaRV | 3-06-0 | ዓላና | 320. | 260 | 7.9 | | | 25/35F-03E0101 | 41 | 18 23 5 | ٦, | 122WNPM | A2-07-22 | 200 | 2345,00 | 400 | 6.7 | 11.5 | | | • | | ç | 1 22 Walnut | 3-06-0 | 002 | | 410 | ¢. | • | | 24/34E-20001 | L 34 14 | 11H CD CJ | 2 | ヘルコンショ | 7-11-5 | ÷ | • | 357 | • | • | | 25/366-27001 | 47 37 54 | 118 15 27 | 0 | 1 > SWNP4 | R2-07-21 | 324 | 236A.00 | 185 | 7.2 | | | | | | | 122WND | 3-06-0 | 324 | 340. | 262 | 7.1 | | | 25/376-21601 | 47 39 64 | 118 09 13 | <u>-</u> | 121Cabv | 2-02-0 | E07 | | 27.8 | ۸. ۲. | | | 25/37F-21L04 | 3,8
4 | 1 60 K | C C | 1226080 | R2-07-21
R3-06-01 | 975 | 2410.00 | 27.8 | . c | 23.7 | | | | | | : | | | | | | , | | 25/376-27501 | 47 39 19 | 118 08 18 | 01 | 122Winda | R2-07-21 | C C | 2420.00 | 190 | 6.6 | ۲. ۲ | | 25/38F-1540] | SE OF 17 | 118 00 38 | 6 | | יו ל | 200 | , a | 7 | | 7 | | *************************************** | | | ;
; | 25 | 83-0e-02 | ٠. | 4 | . 60 | | 10.0 | | 26/31F-32401 | 47 42 36 | 118 54 21 | 0 1 | ; | - | σ | : | • | • | ; | Table 2. -- Continued | 00789-
STU4.
DIS-
SOLVED
(467.
AS K) | | n4 w44
c.⊷ u w n | 0.000.00
0.000.00 | 0. r. s. c. | « • • • • • • • • • • • • • • • • • • • | ww.a.r.v
wcaca | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | 00.04 E | | |--|---------|--|--|---|--|--|--|--|--| | SODIUM
AD-
SORP-
TION
RATIO | | m r & & s | 9.00 | \$ \$ \$ \$ \$ \$ \$\$ | 887.04 | 89487 | E 4 0 0 L | ~ V W
r v w w 4 | 10000 | | PERCENT | | 3 4 E S S S S S S S S S S S S S S S S S S | 22
52
53
29 | 29
32
32 | 29
32
27
28
16 | 18
19
59
50
22 | 25
26
26
26
26 | 23
22
38
56
59 | 27
26
26
32 | | SONTUM.
NTS-
SOI VED
(MR/L
AS NA) | | 7.
16
4.0
4.0 | 21
29
15
15 | 6. E. L. A. | 13
13
11
11 | 8 2 2 4 E E E E E E E E E E E E E E E E E | 0 4 6 4 5 1 4 5 1 | 9. EL C C C C C C C C C C C C C C C C C C | 51
11
75
70
8 | | WARNEL
STUM.
SOLVEN
(MS/L
AS MS) | | 10
10
10
6.7 | « | \$ 5 7 7 8 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 6.6
7.7
12.8 | 51
41
6.0
7.0 | 12
11
12
8.5 | υααι.
« | ۳. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. | | CALCIUM
NIS-
SOLVFN
(MG/L
AS CA) | | 221
21
15
15 | 23
12
22
22 | 12
13
12 | 10
12
33
31 | 30
34
11
36 | 35
16
37
24 | 18
26
17
11 | 11 4 4 3 4 3 4 3 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 | | HAROL
NESS.
NONGER-
RONATE
(MR/L
CACO3) | LINCOLN | ccocc | C OCCC | 00000 | 0
0
15 | 111 | % € %
% ∈ E 4 ∈ | 65666 | 4 & C & C | | HAPS-
NFSS
(MG/L
AS
CACO3) | | 4 4 4 A K K | Գ Դ Դ Փ Փ
ഗ യ Գ Փ Ե | υυ φυν
ααν φα | 54
70
145 | 163
163
163
160
160 | 137
80
138
147
95 | 5
9
7
7
8
1
1
0 | 68
64
157
161
135 | | COLT-
FCDM.
FFCAL.
0.7
UM-MF
(COLS./
100 ML) | | 11117 | 11111 | 11111 | 1:::: | 21111 | 77171 | 11117 | 12121 | | nate
ne
Sawolf | | 71-05-11
83-06-22
82-07-27
82-07-21
83-06-01 | 70-10-23
71-01-14
71-05-14
82-07-21 | 61-10-13
62-10-02
64-04-29
65-03-16
61-10-13 | 62-10-02
64-04-29
65-03-16
82-07-20
82-07-20 | 83-05-02
82-04-23
82-09-09
93-05-04 | 83-05-03
83-05-03
83-05-03
83-05-02 | 82-07-21
83-06-01
62-05-01
82-07-21
83-06-01 |
RP-07-21
RP-05-31
RP-07-20
RP-06-02 | | LOCAL
10FMT-
1 T-
F1FR | | 24/31F-16F01
24/33E-06-01
24/34F-23L01
24/36F-03/01 | 24/34F-154N4
24/34F-16407
24/34F-16408
24/37F-069N1 | 24/375-21401
24/375-21402 | 24/3RE-029N]
24/39E-26KN] | 25/32F-17K1
25/32F-35001
25/13F-01901 | 25/33F-27A02
25/35F-03E0101
25/35E-20001 | 25/36F-27001
25/37F-21L01
25/37F-21L84 | 25/37E-27 <u>5</u> 01
25/38E-15401
26/31F-32401 | Table 2. -- Continued | FI UO-
PIDE.
DIS-
SOLVED
(MG/L
AS F) | |
n 4 w v v | ~ a a n n | 44444 | | ~~~~~ | w.v.v.4 | ~~~~~ | ~ ~ ~ ~ ~ ~ | |---|--------|--|--|--|--|--|---|--|--| | C4L0-
RIDE.
DTS-
SOLVED
(46ZL | | 47. n.w.w. | « m m n r
« o n o r | | 7.00
15.00
4.00 | 0.4
10.4
7.4
7.8 | 18.6
113
110.0 | wraaw
racwo | 25.
20
11 | | SULFATE
DIS-
SOLVED
(W?/L
AS SO4) | | 23
17
17
0.0 | ٦.
٥٠٠ ٢.
٢. | α α α α ι
c ο α c c ι | , n 4 a n | 0.7.0
0.7.7 | £ [[] 0 [] 0 [] | ۲۲.
۴ | | | ALKA-
LINITY
LAR
(WG/L
AS
CACO3) | | 103
96
77
55 | 100 | 11111 | 130 | 148
172
173
179 | 1158
107
103 | 69
87
129
141 | 44
56
127
181 | | ALKA-
LINITY
FIFLN
(MA/L
AS
CACO3) | | :::: | 94
105
116 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 2 4 4 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 11111 | 11111 | 11 201 | 1111 | | CAR-
RONATE
IT-FLO
(MG/L
AS
CO3) | | 10000 | 11160 | 11111 | 11100 | 00000 | | | | | CAR-
RONATE
FET-FLD
(MG/L
AS CO3) | INCOLN | c!!!! | 60011 | 00000 | 66611 | 11111 | ::::: | • | c | | RTCAR-
RONATE
11-FLD
(MG/L
AS
HCO3) | | 151
051
78
78 | 133 | 11111 | 177 | 184
150
151
163 | 137
140
150
150 | 125
174
182 | 71
78
152
158 | | ATCAR-
RONATE
FET-FLO
(MG/L
AS
HCOR) | | \$ 1 1 1 1 | 901
901
901
100
11 | 104
103
104
104 | 106 | 11111 | 11111 | 11211 | 111100 | | JATE
OF
SAMPLE | | 71-05-11
83-06-22
82-07-27
82-07-21
83-06-01 | 70-10-23
71-01-14
71-05-14
82-07-21 | 61-17-13
62-10-02
64-04-29
65-03-16
61-10-13 | 62-10-02
64-04-29
65-03-15
92-07-20
82-07-20 | 83-06-02
92-07-23
82-09-09
82-07-22 | 93-06-03
83-06-03
82-03-03-88
83-06-02
83-07-02 | 82-01-21
82-01-21
82-01-21
83-01-21 | 82-07-21
82-05-31
82-07-20
83-06-02 | | I DCAL
TRENT-
I-
FIFR | | 74/31E-16501
24/73E-06301
74/34E-23L01
24/36E-03001 | 24/34F-16404
24/34F-16407
24/34F-16408
24/37F-06301 | 24/37F-21001 | 24/38E-02001
24/39E-26K01 | 25/72F-17K01
25/72F-35501
25/73F-01801 | 25/33F-27802
25/35F-03F0101
25/35F-20001 | 25/365-27901
25/375-21L01
25/375-21L04 | 25/37F-27F0]
25/38F-1540]
26/31F-32A0] | Table 2. -- Continued | | H | Table 2 | 1. | -Continued | eri. | | | | |------------------------------|---|--|--|---|---|---|---|--| | LOCAL
IDFNT-
FIFR | DATF
OF
SAMPLF | SILICA.
NIS-
SOLVED
(MG/L
AS-
SID2) | SOLIDS. PESTOUE AT 180 DFG. C DIS- SOLVED (MG/L) | SOLIDS.
SUM OF
CONSTI-
TUENTS.
DIS-
SOLVEN
(MG/L) | NITRO-
GEN.
VITPATF
TOTAL
(MG/L | NITRO-
GEN+
ND2+NO3
TOTAL
(MG/L | NITRO-
GEN.
NO2+NO3
DIS-
SOLVE3
(MA/L
AS N) | | | | | LINCOLN | OLN | | | | | | | 24/31E-15E01 | 71-05-11 | η.
4 | 204 | 210 | ! | 8 | ; | | | 24/335-06001 | R3-04-22 | 47 | ; | 171 | ! | ! | 1.9 | | | 24/345-23601 | 82-07-27 | 4 4
7 U | 1 1 | 181 | 1 1 | 1 1 | | | | 10/15/0-305/47 | 93-04-01 | 4 | !! | 134 | ! ! | 1 1 | n en
• en | | | 4/365=1680 | 70-10-23 | 4 | 179 | 160 | 7 | 1 | ; | | | 24/365-16407 | 71-01-14 | . t. | 159 | 172 | 0.4 | : | 1 | | | 4/36F-1540 | 71-05-14 | 55 | 200 | 101 | 1 | A C . | ; | | | 4/37F-060A | 92-07-21 | 47
45 | 11 | 183
173 | 11 | 11 | ا.
م.ر | | | [UNIC-378/36 | ֡֞֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓ | ď | 134 | ~ | 00 | ; | ! | | | 104.13 | 10-01- | 38 | 138 | ٦ 🖈 | 01. | ; | 1 | | | | 64-04-50 | 36 | 129 | 130 | 06. | ; | ! | | | | -03-1 | 36 | 134 | • | •30 | ! | ! | | | 24/37E-71402 | -10-1 | 34 | 129 | 3 | 00. | ; | : | | | | 2-10-0 | 38 | 135 | 138 | .10 | ; | ; | | | | 7-90-5 | . 37 | 129 | 135 | .10 | i
i | : | | | | 5-03-1 | 3 | 140 | 133 | 9.
9. | 1 | ! | | | 24/395-02001
24/395-25K01 | 82-07-20 | ጥ ሳ
ፈ ሂ | 1 1 | 247
205 | 1 1 | : : | 7.6
.10 | | | | | | | | | | | | | | 83-04-02 | 63 | ! | 203 | 1 | ; | -15 | | | 25/32=-1/401
25/325-35P01 | ? ? | 2 V | ; ; | 022 | ! ! | 1 1 | 4 · 4 | | | | ះ | ır.
ac | ; | 212 | ; | ; | . 21 | | | 25/335-01901 | ç | 4 | ; | 558 | 1. | ; | 4.2 | | | | 83-04-03 | £ 7 | ! | 233 | ; | i
i | 4.3 | | | 25/33=-27002 | 83-05-03 | 47 | } | 100 | ! | ! | <.10 | | | 5/35E-03E0101 | 82-01-22 | 4 | 1 | 229 | ľ | ! | 12 | | | 25/355-29001 | 44-04-07 | 7 4
7 4 | ! ! | 175 | | : : | .71 | | | ;
; | | | | -
- | | | • | | | 25/3627001 | 82-07-21 | 6 , | ł | 141 | ! | 1 | 3.5 | | | 0.16-376/3 | 0 - 50 - 6 | c (1) | 1 1 | 107 | • | 1 | • | | | 25/375-211.04 | | , ic | 1 | 217 | • | 1 1 | ×-10 | | | | 3-04-0 | ٤٦ | 1 | 219 | ł | ; | ۰.10
د.10 | | | 25/376-27601 | 82-07-21 | ر
د ر | ľ | 142 | ł | 1 | • | | | 25/385-15v0] | 82-07-31 | o 60
4 4 | : : | 756 | : : | 1 1 | r d | | | T T = -1.6 /L 3 | 83-04-02 | . 74 | ; | 263 | : 1 | . ! | | | | 26/315-32801 | 49-12-03 | E 7 | 247 | 255 | 1.7 | ŀ | • " | | # Table 2. -- Continued | MANGA-
NFSE.
DIS-
SOLVED
(UG/L
AS MN) | | ; | 10 | 7 | m | ₽ | ; | : | ! | ~ | ~ | ; | ; | ! | ; | 1 | ! | 1 | ; ; | 1 | 6 | | 20 | ٨ | 4 | ×α | | ∾ ! | \ <u>u</u> | ٠, | 300 | 19 | ~ | ; | ^ | 4 | ⊽ | را
دا | m - | 1 | ; | |---|---------|--------------|---------|---------|---------|--------|---------|------------|------------|----------|----------|--------------|------------|---------------|--------|--------------|--------|------|---------------|-------|--------------|---|--------|--------------|----------|--------------|---|----------|---|-------------------------------|--------------|--------------|----------|--------------|------------|--------|--------------|----------|--------------|---------------|--------------| | MANGA-
NESE.
TOTAL
PFCOV-
FOABLF
(UG/L
AS MN) | | در | ! | ; | ! | ; | ; | 450 | 450 | ! | ; | <50 | <50
450 | <50 | ۰5، | 450 | ,
, | , v | 000 | : 1 | ; | | ; | ! | ! | ; ; | | 1 | ; ; | : : | ; | ; | ; | ! | ! | ; | ! | ; | ; | : | • | | IRON.
DIS-
SOLVED
(UG/L
AS FE) | | 1 : | 10 | €> | æ | σ | ; | ; | ; | 25 | 4 | ; | : | ; | ; | ; | ; | : : | ; | ć | 7.0 | 1 | 52 | ır | 7. | ćα. | | 7 1 | ž | . ī | 10 | 4 | 11 | : | <u>م</u> _ | 30 | <3 | 12 | | £ | | | TOTAL
PFCOV-
F7&PLE
(UG/L
AS FF) | ř. | ę. | ! | ; | ; | ; | ; | 9 | n
O | ; | ; | 50 | | 1100 | 7.0 | 60 | , | 0.47 | 0 40 | | ; | | ; | ; | ; | : : | | ; | ; ; | : : | ! | ! | ! | 7.0 | ; | ; | ; | ! | ! | - | 0417 | | DATE
OF
SAMPLE | LINCOLN | 71-05-11 | 3-04-5 | -01-5 | 2-11-5 | 3-06-0 | -10- | 1-01-1 | 1-05-1 | -11- | 3-04-0 | 1-10-1 | 2-10-0 | 4 | 5-03-1 | 1-10-1 | 2-10 | | 1 0 1 1 1 1 1 | 7-07- | -07- |) | 3-06-0 | 2-10-2 | 2-00-0 | 82-07-22 | | 93-04-03 | | 3-06-0 | 2-10-6 | 2-11-2 | 3-04-0 | 62-05-01 | 2-11-5 | 3-04-0 | 2-11-5 | Ę. | 2-01-2 | 3-04-0 | 0 - 1 - 2 | | LOCAL
INENT-
I-
FIEP | | 24/31E-14F01 | 4/336-0 | 4/34E-2 | 4/36E-C | | 4/36E-1 | 4/36E-16 | 6F-16 | 4/37E-06 | | 24/37E-21NO1 | | | | 24/37E-21NO2 | | | | 4/3AF | 24/39F-26V01 | | | 25/325-17K01 | 5/325-3 | 25/33E-01P01 | • | | 50475-1557-50
10101-01-01-01-01-01-01-01-01-01-01-01-0 | (T (D () C () T () T () | 25/35E-20001 | 25/365-27001 | | 25/375-21101 | 375-211 | | 25/37E-27E01 | | 25/38E-15N01 | 10000 3107 70 | 27/31t-3/401 | Table 2.--Continued | TFMDE2-
ATURE
(NFG C) | | 11.5 | 12.6 | 12.7 | 12.2 | 14.4 | 12.2 | A.3 | 13,3 | 15.6 | 12.8 | ٩.٢ | 14.4 | 13.4 | 13.3 | 16.7 | 12.2 | ٧.٨ | 12.8 | 15.6 | 12.2 | 11.1 | 13.9 | 14.A | 12.8 | 11.1 | 11.1 | |---|---------|--------------|--------------|----------|--------------|----------|----------|----------|--------------|----------|----------|----------|--------------|--------------|--------------|----------|----------|----------|--------------|----------|----------|--------------|--------------|----------|--------------|--------------|--------------| | STAND-
ARD
UNITS) | | α α | 7.1 | 7.6 | 7.6 | 7.4 | 7.0 | 7.4 | 7.4 | 7.4 | 7.2 | 7.4 | ο.α | e, 8 | 7.6 | 7.4 | 7.2 | 7.2 | 7.6 | 7.4 | 6.8 | 7.9 | 8.2 | 7.7 | 8.1 | e. | 7.9 | | SPF-
COTFIC
COUL
DUCT-
ANOF | | 213 |
 | 555 | 246 | 250 | 696 | 959 | 722 | 225 | 238 | 826 | 400 | 200 | 213 | 929 | 246 | 600 | 256 | 277 | 313 | 362 | 1190 | 1350 | 178 | 9 R C | 519 | | FIFV. OF LAND SUBFACE DATUM (FT. AROVE | | 2060.00 | 2160.00 | 2160.00 | 1 | • | ; | ; | : | 1
| ; | : | : | 2175.00 | ; | ; | : | : | : | ; | 1 | : | 1319.00 | • | ; | ; | 1297.00 | | DFOTH OF WFLI TOTAL (FFFT) | | 156 | 154 | 154 | 504 | 594 | 40 č | 762 | 100 | 291 | 291 | 291 | c 0 6 | 233 | 347 | 747 | 347 | 347 | 326 | 95¢ | 326 | 7 7 | 173 | 173 | 56 | 202 | 1 89 | | nate
Of
Sample | | P2-07-23 | R2-07-23 | R3-06-21 | 61-10-12 | 52-10-01 | 44-04-29 | 65-03-18 | 61-10-12 | 42-10-01 | 64-04-59 | 65-03-18 | 62-05-01 | A3-06-04 | 61-10-12 | 62-10-01 | 62-90-59 | 65-03-18 | 61-10-12 | 42-10-01 | 62-50-59 | 12-60-19 | 47-10-24 | 71-10-07 | 12-60-14 | 67-10-13 | 47-10-16 | | 650-
1051C
UNIT | LINCOLN | 122WNPW | 122WNPW | 122WVPW | ; | ; | ! | ; | 1 | ; | ; | ! | ! | 122CARV | : | ; | ; | ! | : | ; | ; | ! | ŀ | ; | ; | ; | 1126LCV | | אַ פֿיַר א
ס פּר א
• מים א | | 1, | 0.1 | | 01 | | | | 20 | | | | 0 | 0 | 0 | | | | 5 | | | 5 | 0 | | 20 | 93 | | | LON 3-
1-
1UDF | | 118 45 42 | 118 43 08 | | 118 36 20 | | | | 118 35 20 | | | | 4 | 118 42 54 | 13 | | | | 118 13 18 | | | 133 | ç | | 118 41 23 | ď | 118 10 26 | | L & T = 1
I = TUNF | | 47 43 34 | 47 45 57 | | 47 46 10 | | | | 47 46 10 | | | | 44 | 47 44 35 | 64 | | | | 47 49 33 | | | 70 67 27 | 47 54 05 | | 47 55 33 | 64 | 47 53 41 | | LOCAL
10071-
1-
7169 | | 26/32E-26001 | 24/335-07501 | | 26/33F-1240] | | | | 26/33F-12w02 | | | | 26/33F-18L01 | 10061-346/92 | 27/346-24501 | | | | 27/345-24502 | | | 27/34F-30C03 | 28/31E-08901 | | 29/13E-17E02 | 28/34F-20101 | 2A/37E-29L01 | Table 2.--Continued | POTAS-
SIU4.
DIS-
SOLVED
(MG/L | | e. c. | . . . | n w
4 æ | 6.4 | 4.1 | c. 4 | 3.0 | 7.7 | 6.0 | 4.0 | 3.2 | 3,3 | e. « | 2.5 | 2.1 | 2.3 | 2.3 | 7.3 | ٠. ٧ | 4.3 | 13 | 13 | 7.0 | 4.5 | 1.4 | |---|---------|--------------|--------------|----------------------|----------|----------|----------|--------------|-------------------|----------|----------|--------------|--------------|--------------|----------|-----------|----------|--------------|----------|----------|--------------|--------------|----------|--------------|--------------|--------------| | SODIUM
AD-
SOPP-
TION
RATIO | | 0,0 | ٠, | . 4. | ۲. | ۲. | ۲. | 9. | æ, | ۲. | ę. | 6. | Œ. | ۲. | 6.4 | ٠. | ٠. | α. | 1.2 | 1.2 | r. | ۲. | œ. | -: | r. | €. | | PERCENT | | 9.E. | 25 | 21 | 25 | 24 | 54 | 54 | 23 | 52 | 23 | 32 | 31 | 92 | 7 | 24 | 27 | 27 | 37 | 36 | 14 | 12 | 12 | 7 | 18 | | | SONTUM.
DIS-
SOLVED
(MG/L
AS NA) | | 8.5 | 000 | 38
14 | 7. | 15 | 15 | 13 | 12 | 4. | 13 | 16 | 15 | 4 | 100 | 4. | 14 | 17 | * | 7.0 | 13 | 86 | 45 | ٥٠,٥ | 13 | 5.5 | | WARNE-
SIUW.
DIS-
SOLVED
(MG/L
AS-MG) | | 4 G | 24 | 33 | 12 | 13 | 12 | 9.1 | ν <u>ς.</u>
α' | 0.0 | 4.0 | • | c • 6 | φ. | ٨.٦ | 4.8 | 6.9 | 7.2 | 7.7 | 7.0 | 7 6 | ۷۷ | ۵7 | 7.0 | 17 | 5.1 | | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | | 4 4 | 50. | 66
18 | 18 | 19 | 20 | 20 | 20 | 20 | 19 | 12 | 13 | 25 | 23 | 5¢ | 20 | 27 | 23 | 27 | 42 | 123 | 140 | 20 | 20 | 31 | | HARD-
NESS.
NONCAR-
RONATF
(MALT CACO3) | LINCOLN | cc | 31 | 4 0 | c | 0 | c | c | C | 0 | c | 0 | 0 | 0 | c | c | c | c | c | c | c | 413 | 523 | ^ | 0 | 1 | | HARD-
NESS
(MA/L
AS
CACO3) | | 74 | 554 | 301 | 76 | 101 | 66 | 87 | 95 | 47 | 87 | 69 | 70 | 82 | æ
₹ | 26 | 78 | 44 | 87 | 100 | 163 | 595 | 7.0.P | 70 | 120 | 9,8 | | COLI-
FREAL-
PFCAL-
O-7
UM-WF
(COLS-/
100 WL) | | : : | ; | 11 | : | ; | ; | 1 | ; | ; | • | ! | ⊽ | : | : | ; | ; | ; | ! | ; | ! | ; | ! | ; | ; | ; | | OATE
OF
SAMPLF | | 89-10-10A | A2-07-23 | 83-06-21
61-10-12 | 42-10-01 | 62-90-54 | 45-03-18 | 61-10-12 | 62-10-01 | 62-04-59 | 65-03-18 | 62-05-01 | 83-06-04 | 61-10-12 | 62-10-01 | 62-10-59 | 45-03-18 | 61-10-12 | 42-10-01 | 62-10-19 | 47-00-27 | 47-10-24 | 71-10-07 | ZZ-60-25 | 47-10-13 | 47-10-14 | | I OCAL
TOFNIT
1-
FIFS | | 24/326-26991 | 26/37F-07En1 | 26/375-12401 | | | | 26/33F-12402 | | | | 26/33F-18L01 | 24/37E-19001 | 27/345-24501 | | | | 27/345-24502 | | | 27/34F-30C03 | 28/31F-n8p01 | | 28/33E-17F02 | 28/34F-20L01 | 29/37F-29L01 | Table 2.--Continued | FILIN-
PIDE.
DIS-
SOLVEN
(MG/L
AS F) | ր
Մ. Ու և ա |
ທີ່ ຄົດ ຄົດ 4 ພ | មេខ ខេត្ត | າທ ທ່າວ ຈະ ເ | | n. o. | |---|--|---|--|--|--|------------------------------| | CHLO-
RIDE.
DIS-
SOLVFD
(MG/L
AS CL) | ر
د د د د
د 4 | n 4004n
n nanvn | | 6 0 0 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 4.
6.
6.
6.
7. | 6. | | SULFATE
NTS-
SOLVED
(MS/L
AS SO4) | 6.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 8, 8 11 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 | ~ K K K 4 W | | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 8 6 | | ALKA-
LINITY
I AR
(MG/L
AS
CACA3) | 100
103
193
255 | | ₆ | | 11111 | 11 | | ALKA-
LINITY
FJELN
(MG/L
AS
CACO3) | 1111 | 109
110
109
95 | 100
101
98
102 | 1101111 | 2,1
2,0
1,0
1,0
1,0
1,0
1,0
1,0
1,0
1,0
1,0
1 | 128
97 | | CAR-
RONATE
IT-FLD
(MG/L
AS
CO3) | 6.00 | | ° | | 11111 | 11 | | CAP-
BONATE
FET-FLD
(MG/L
AS CO3) | LIAGOLN | 0 00000 | 00010 | | . c c c c | m 0 | | RICAR-
BONATE
IT-FLD
(MG/L
AS
HCD3) | 128
119
223
281 | ! !!!!! | 141 | | ::::: | :: | | ATCAS-
ANNATE
(MG/L
AS
HCO3) | 1111 | 133
134
133
114 | 2011
2011
2011
2014 | 13.5
13.5
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6 | | 150
118 | | nate
nf
Samplf | 82-07-23
83-06-04
82-07-23
83-06-21 | 67-10-17 67-10-01 64-04-29 65-03-18 61-10-12 67-10-12 | 64-04-29
65-03-18
62-05-01
83-06-04
61-10-12 | 65-03-18
65-03-18
65-03-18
61-10-12
62-10-01 | 54-04-79
67-09-27
67-10-24
71-10-07
67-09-27 | 67-10-13
67-10-15 | | 1 OCAL
TOENT-
1-
FJF9 | 26/77F-26701
26/77F-07F01 | 26/33F-12402 | 26/33F-18L01
26/33F-19701
27/36F-24501 | 27/36F-24502 | 27/34 <u>6</u> -30C03
28/31F-08P01
28/33F-17F02 | 28/34F-20L01
28/37E-29L01 | Table 2. -- Continued | | Ť | 7 3 7 7 8 7 | 5 |) | | | | |-----------------|----------|-------------|--------------------|---------|---------|-----------------|----------| | | | SILICA | SOLIDS.
RESIDUE | SOLIDS. | WITRO- | LOSTIN | NITRO- | | LOCAL
IDENT- | DATE | SOLVED | AT 180 | CONSTI- | GFN. | 6EN•
NO2+403 | N02+N03 | | <u> </u> | 06 | 7/5/ | n. 15- | 015- | | TOTAL | SOLVE | | FIFD | SAMPLF | 8 | SOLVED | SOLVED | 7/9m) | (MG/L | 1/9w) | | | | (2175) | (^6/5/ | (M8/L) | 45 NO31 | AS N) | AS N) | | | | 2 CC 5 T | 2 | | | | | | | | | | | | | | | 26/325-26001 | 82-01-23 | ٥۴ | ; | 155 | ! | i i | 16. | | | 83-04-04 | 37 | ; | 159 | : | ! | <.10 | | 26/335-07F01 | 82-U1-53 | 44 | ; | 348 | ; | 1 | 9.0 | | | 83-05-21 | 43 | ; | 644 | ! | : | 3.2 | | 24/33F-12W01 | 61-10-12 | 37 | 174 | 165 | 3.2 | ; | : | | | 62-10-01 | 47 | 177 | 176 | 3.6 | ŧ | ; | | | 64-04-20 | 4 | 184 | 183 | 4.4 | ; | ŧ | | | 65-03-1R | 43 | 180 | 178 | 6.1 | ł | ; | | 26/37F-12M02 | 61-10-15 | 44 | 173 | 164 | 3.6 | ; | ; | | | 62-10-01 | 39 | 165 | 153 | 3.2 | ; | : | | | 64-04-20 | 44 | 4 | 166 | 0 | } | | | | 45-63-18 |) (| 141 | 141 | | : | : : | | 26/335-13101 | 62-05-01 | 4 | : ; | 140 | 0.00 | ; | ; | | 24/335-19001 | 83-04-04 | 37 | ; | 156 | : 1 | ; | <.10 | | 27/36E-24F01 | 61-10-12 | 4 | 162 | 158 | 3.2 | : | ; | | | 62-10-01 | 4 | 395 | 396 | 6.1 | ; | ; | | | 64-04-50 | ₹ | 178 | 171 | 5.1 | ; | : | | | 65-03-18 | 37 | 160 | 149 | 7.7 | 1 | ; | | 27/365-24502 | 61-10-15 | 47 | 190 | 140 | 7.0 | • | ; | | | 62-10-01 | 4 | 199 | 199 | 4 • A | ; | : | | | 64-04-50 | 4.7 | 220 | 503 | 7.4 | ł | ; | | 27/365-30003 | 42-60-19 | 32 | 274 | 227 | o*c | ; | ŧ | | 24/315-08001 | 67-11-24 | 30 | 1000 | 872 | 6.1 | ; | ; | | | 71-10-07 | e
S | 1090 | 1034 | 1.8 | ; | ; | | 28/336-17502 | 67-00-27 | 13 | 106 | 104 | 1.4 | : | ; | | 29/365-20101 | 67-19-13 | ٤, | 180 | 175 | 3.9 | ; | ; | | 28/375-29601 | 67-10-16 | ŗ. | 133 | 138 | .60 | 1 | : | | ಠ | |-----| | g | | ğ | | = | | F | | | | | | 겁 | | 8 | | Con | | ~~ | | Ÿ | | 1 | | 1 | | • | | ~ | | | | 0 | | Н | | Ω | | _ | | m | | Tal | | MANGA-
NESE.
DIS-
SOLVED
(UG/L | | | → ∨ | ٧ | • | ; | - | : | : | 1 | ; | | • | | • | | - 0 | - | - | | - | | | | | - | | |---|---------|-------------|--------------|--------|--------------|------------|---------|--------|--------------|--------|------------|------------|-------|------------|--------------|------------|-----------|-----|--------------|------|------|--------------|--------------|------|--------------|------------|--------------| | MANGA-
NFSF.
TOTAL
PFCOV-
EPABLF
(UG/L | | • | ! ! | ; | <5n | ~ 5 | ,
5, | ,
5 | <50 | \$ | \50
050 | 650 | 1 | | \$ | < <u>5</u> | \$ | <50 | | | Š | | | | v5> | <50
<50 | | | IRON.
DIS-
SOLVED
(UG/L | | 4 | | 10 | ! | ; | • | ! | 1 | ! | : | ; | ; | 33 | • | ; | ; | • | ! | ; | ; | • | • | ; | • | ; | 1 | | TANN. TOTAL RECOV- EDARLE (UG/L AC FF) | יונ | i i | ! ! | ! | <10 | <10 | 10 | 60 | 7.0 | 20 | 4 | , ru | 30 | 1 | 10 | 900 | _ | 10 | 4.0 | 10 | 33 | 120 | 140 | 30 | 20 | 190 | , | | DATE
OF
SAWOLE | LINCOLN | 5-10-2 | 92-01-04 | 3-40-8 | 1-10-1 | 2-10-0 | 2-46-4 | 5-03-1 | ċ | 2-10-0 | 900 | | 7-05- | 3-06- | 1-10- | - 10- | - 40- 4 | ŗ | 1-10- | -10- | 7-70 | 2-60 | ٠. | 0-01 | 2 | 67-10-13 | 71 01 17 | | LOCAL
1)FNJ-
7 IFD | | 4/32E-24N01 |
16/336-07601 | | PK/33E-12M01 | | | | 34/33F-12M02 | | | | 366/5 | 6/33E-1900 | 27/36E-24F01 | | | | 27/36E-24F02 | | | 27/355-30003 | 24/31E-0AD01 | | 24/335-17502 | A/36F- | 10101 350103 | ### TABLE 3.--Ground-water-quality data: trace metals concentrations, by county: ### EXPLANATION OF GEOLOGIC UNITS Geologic unit codes used in this table indicate that wells are open to one or more of the following formations. | Geologic Unit (| Code Formation | |-------------------|---| | Basalt units | | | 122 SDL | Saddle Mountains Basalt | | 122 YKI | Saddle Mountains and Wanapum Basalts, undivided | | 122 WWP1 | Manapum Basalt | | 122 CBRY | Wanapum and Grande Ronde Basalts, undivided | | 122 GDRI | Gronde Ronde Basalt | | | | | | | | nconsolidated un: | .ts: | | | | ### Un | 110 | ALVM | Alluvium | |-----|-------------|------------------------| | 112 | GLCV | Glaciofluvial deposits | | 112 | RGLD | Ringold Formation | Table 3.--Continued | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | | !!!!! | \$!! | 171 | | | | | | |--|-------|--|--|--|--|-------|--|---|--| | ALUM-
IVUM-
DIS-
SOLVED
(UG/L
AS AL) | | ::::: | ۵
0
1 | 101 | URY
AL
BELE
1/1 | | ::::: | ::::: | ::: | | ALUM-
INUM•
TOTAL
RECOV-
ERARLE
(UG/L
AS AL) | | 110
<10
10 | 11000 | 100 | HERCURY
101 TOTAL
5- RECOV-
ED ERABLE
11 (UG/L
12 (GG/L | | <pre></pre> <pre>< 100 < 100 </pre> | 1000
1000
1000 | <100
<100
<100 | | ELFV.
SUPFACE
DATUM
(FT.
ABOVE | | ::::: | 500
505
505
100
110 | 864.00 | • LEAD•
01S-
0 SOLVEC
(UG/L | | | | 500 | | JF | | 865
237
905
 | 1020
165
165
15
165
15
14
807 | 433
1027 16
95 | COPPER.
DIS-
SOLVED
(UG/L
AS CU) | | 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | , Λ ι λ ιν | • • | | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | - 4 - 10 - | 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | CHRO-
MIUM.
DIS-
SOLVED
(UG/L
AS CR) | | 0000 | <pre></pre> | <30
<10
<30 | | DATE
OF
SAHPLE | | 71-10-06
71-09-23
70-10-27
71-09-29 | 83-03-17
83-05-24
83-05-19
71-10-05 | 70-1
83-0
70-1 | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | | 11111 | 22211 | 141 | | 660-
L061C
UNIT | ADAMS | 121CBRV
121CBRV
121CBRV | 122GDRD
122WNPW
122GDRD
121CRRV
121CBRV | 122CARV
121CARV | BARIUM. C/
DIS-
SOLVED
(UG/L
AS BA) | ADAMS | ::::: | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 171 | | S NO . | | 00000 | 00000 | 01001 | as vi | | 23
23
29
29 | -17
-124
-19
-03 | 0-03
0-03 | | LDNG-
I-
TUDE | | 119 19 06
119 14 41
119 09 22
118 08 59
118 35 46 | 118 36 51
118 30 11
118 56 16
118 10 29
118 44 10 | 118 43 09
118 18 18
118 31 56 | DATE
OF
SAMPLE | | 71-10-06
71-09-23
70-10-27
71-09-29 | 83-03
83-05
83-05
71-10 | 70-10
83-05
70-10 | | LAT-
TUDE | | 46 47 40
46 46 33
46 49 09
46 45 39
46 53 50 | 46 58 53
46 57 05
47 00 46
47 04 02
47 07 10 | 47 06 56
47 07 46
47 13 09 | LOCAL
IDENT-
I-
FIER | | 15/28E-15D01
15/28E-24G01
15/29E-03J01
15/37E-27H01
17/33E-12F01 | 7/33E-12F02
7/34E-23F01
8/31E-33D01
8/37E-08J01
9/32E-24K01 | 19/33E-30C01
19/36E-20H01D1
20/34E-22D01 | | LOCAL
IDENT+
I-
FIER | | 15/2RE-15D01
15/2RE-24601
15/29E-03J01
15/37E-27H01
17/33E-12F01 | 17/33E-12F02
17/34E-23F01
18/31E-33D01
18/37E-08J01
19/32E-24K01 | 19/33E-38C01
19/36E-20H01D1
20/34E-22D01 | | | AAAAA | 44444 | 199 | Table 3.--Continued | ZINC.
DIS-
SOLVED
(UG/L
AS ZN) | | 10
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 410 | 100
18
70 | |---|-------|--|--|--| | SILVER.
DIS-
SOLVED
(UG/L
AS AG) | | 11111 22 | ⊽!! | 171 | | SELE-
NIUM.
DIS-
SOLVED
(UG/L
AS SE) | | | 211 | 121 | | MERCURY
DIS-
SOLVED
(UG/L
AS HG) | ιa. | 11111 22 | :11 | 121 | | DATE
OF
Sample | ADAMS | 71-10-06
71-09-23
70-10-27
71-09-29
71-09-28
83-03-17 | 83-05-19
71-10-05
70-10-03 | 70-10-03
83-05-20
70-10-03 | | LOCAL
IDENT-
I-
FIER | | 15/28E-15D01
15/28E-24G01
15/29E-03J01
15/37E-27H01
17/33E-12F01
17/33E-12F02 | 18/31E-33D0!
18/37E-08J01
19/32E-24K01 | 19/33E-30C01
19/36E-20H01D1
20/34E-22D01 | | Continued | | | |-----------|-----|--------| | - 1 | 7 | 3 | | - 1 | 7 | ñ | | - 1 | _ | ' | | - 1 | - 5 | 3 | | - 1 | ċ | 4 | | - 1 | • | 7 | | - 1 | • | ٦ | | - 1 | + | ۱ | | - 1 | Ċ | 4 | | - 1 | - 2 | 7 | | - 1 | • |) | | - 1 | ľ | ١ | | | `` | 7 | | | | | | • | | | | | Ì | | | | ı | | | | • | | | ო | • | | | ന | ~ | • | | ന | ~ | • | | е
3 | , | י
ט | | е
3 | , | י
ט | | е
3 | , | י
ט | | е
3 | , | י
ט | | е
3 | , | י
ט | | е
3 | , | י
ט | | • | | | | | 1 | | | | ı | | | • | ı | | | | ı | | | | ı | | | | ı | | | | ı | | | | ı | | | | ı | | | | ı | | | | ı | | | | ı | | | | ı | | | | • | | | | • | | | | • | | | | • | | | ന | ~ | • | | е
3 | , | י
ט | | е
3 | , | י
ט | | е
3 | , | י
ט | | е
3 | , | י
ט | | е
3 | , | י
ט | | е
3 | , | י
ט | | ന | , | י
ט | | | ARSENIC
DIS-
Solved
(UG/L
AS AS) | | 11:71 | -1011 | 11 | | | | | | |------------|--|---------|---|--|--------------|---|---------|--|---|------------| | | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | | 4100
4101 | 1001 | 1 1 | S 410 - | | | | ;; | | | ALUM-
INUM.
TOTAL
RECOV-
ERABLE
(UG/L | | 1 4 30 | 10101 | 170
30 | MERCURY
TOTAL
RECOV-
CUG/L
(UG/L | | 80000 | m 0 0 0 | 01 | | | ELEV. OF LAND SURFACE DATUM (FT. AROVE | | 670.00
660.00
2475.00
1556.00 | 2400.00
801.00
801.00
2245.00 | İl | LEAD.
DIS-
SOLVED
(UG/L
AS PB) | | <pre></pre> | 4100
100
100
100 | 410 | | | ± •J£ | | 82 6
182
260 6
515 24
191 15 | 205 24
159 8
159 8
265 22
755 | 755
755 | COPPER.
DIS-
SOLVED
(UG/L
AS CU) | | 4 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | \$ 650 \$ 500 \$ | 450
1 | | inued | | | 25
20
20
10
10
10
10
10
10 | -07
-25
-11
-08 | 6-14
9-26 | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 6 10
6 30
6 30
6 30 | 430 | | -Continued | DATE
OF
SAMPLE | v | 79-07-25
70-11-09
71-10-20
83-06-07
71-10-08 | 83-06-07
71-05-25
79-07-11
71-10-08
72-06-14 | 72-06 | (ADMIUM
DIS-
SOLVED
(UG/L
AS CD) | | 11171 | 11011 | :: | | le 3 | GE0-
LOGIC
UNIT | DOUGLAS | 1126LCV
1126LCV
122CBRV |
122WNPM
1126LCV
1126LCV | : : | J | DOUGLAS | 11161 | * 1 0 1 1 | 11 | | Table | SEO. | | 00000 | 001000 | | BARIUM.
DIS-
SOLVED
(UG/L
AS BA) | | | ~ 10 80 | 4 0 | | | LONG-
I-
TUDE | | 120 09 48
119 52 24
120 16 40
119 44 44
119 43 07 | 119 35 52
120 12 48
119 38 08
119 30 39 | | DATE
OF
Sample | | 79-07-25
70-11-09
71-10-20
83-06-07
71-10-08 | 83-06-07
71-05-25
79-07-11
71-10-08
72-06-14 | 72-06-1 | | | LAT-
TUDE | | 47 22 28
47 26 49
47 32 40
47 34 49 | 47 43 48
47 49 48
47 49 01
47 48 55 | | LOCAL
DENT-
I =
F I ER | | 1E-26901
0E-35001
0E-35J01
5E-18E01
5E-32C01 | 6E-06H01
1E-21N02
5E-25C01
6E-25D06 | | | | LOCAL
IDENT-
I-
FIER | | /21E-26801
3/24E-31E02
//20E-35J01
//25E-18E01 | ,/26E-06H01
5/21E-21H02
7/25E-25C01 | | 32 - | | 22/218
23/248
24/201
24/25 | 24,5
2,65
2/75
5/75 | | ZINC. DIS-SOLVED (UG/L AS ZN) 60 60 60 560 610 600 <10 <10 <10 <10 SILVER. DIS-SOLVED (UG/L AS AG) 71911 21171 :: SELE-NIUM. DIS-SOLVED (UG/L Table 3. -- Continued MERCURY DIS-SOLVED (UG/L AS HG) 31131 31311 11 DOUGLAS 79-07-25 70-11-09 71-10-20 83-06-07 71-10-08 83-06-07 71-05-25 79-07-11 71-10-08 72-06-14 72-06-14 DATE OF SAMPLE 22/21E-26R01 23/24E-31E02 24/20E-35J01 24/25E-18E01 24/25E-32C01 24/26E-06H01 26/21E-21N02 27/25E-25C01 27/26E-25D06 LOCAL IDENT-I-FIER Table 3.--Continued | LOCAL
IDENT-
I-
FIER | LAT-
TUDE | LONG-
1-
TUDE | • | SEQ. | GEO-
LOGIC
UNIT | DATE
OF
Sample | DEPTH
OF
WELL•
Total
(Feet) | OF LAND
SURFACE
DATUM
(FT.
ABOVE | INUM.
TOTAL
RECOV-
ERABLE
(UG/L | ALUM-
INUM-
DIS-
SOLVED
(UG/L
AS AL) | ARSENIC
DIS-
SOLVEO
(UG/L
AS AS) | |-------------------------------|-------------------|---------------------|------------------|------|-----------------------|----------------------|---|--|---|---|--| | | | | | | FRANKLIN | 7 | | | | | | | 09/30E-02901
09/30E-18H01 | 46 17 12 46 15 55 | 119 00 | 4
1
4
5 | 010 | 12250LM | 83-03-08
70-08-28 | 211 | 515.00 | 1 6 | 410 | * ! | | 11/30E-11C01
12/28F-24N01 | 30 | | | 100 | 1 1 | 70-12-14 | 614 | : : | < 10
140 | ; ; | 1 1 | | 13/28E-13401 | 36 | | | 6 | 122WNPH | 70-11-10 | 1119 | 952,50 | 40 | 1 | ; | | | | | | | 122WNPH | R3-03-14 | 1119 | 952.00 | ; | 10 | ; | | 13/29E-08H01 | 46 37 46 | 119 12 | 07 | 0 | 1225nlm | 83-03-10 | 450 | 995.00 | 1 | 10 | N | | 13/3nE-31N01 | 33 | | | 0 | 12250LM | 83-03-10 | 235 | 880.00 | ; | 10 | 1 | | 13/31E-01E01 | | | | [| 122GDRN | 83-03-10 | 1325 | 860.00 | ; | 10 | ~ | | 13/32E-07E02 | | | | 01 | 122WNPM | 83-03-10 | 652 | 1070.00 | : | 10 | ~ | | 3/33E-06M01D1 | 38 | | | 01 | 122CBRV | 83-03-10 | 380 | 785.00 | ; | 10 | ; | | 14/29E-09A01 | 46 43 21 | 119 10 | 4.1 | 01 | 121CARV | 67-02-13 | 863 | ; | ; | ! | 1 | | | | | | | 121CBRV | 69-06-12 | 863 | • | <10 | 1 | ; | | 14/29E-19001 | 0 | | | 0 | 12250LM | 83-03-10 | 420 | 1085.00 | 1 | 10 | ; | | 14/31E-19901 | 46 41 35 | 118 58 | 12 | 01 | 122YKIM | 83-03-11 | 320 | 1115.00 | ; | 10 | ; | | 14/31E-36J01 | 46.39.15 | 118 51 | 30 | 0.1 | ; | 70-09-24 | 1105 | ; | <10 | 1 | ; | MERCURY TOTAL RECOV-ERABLE (UG/L AS HG) 1111 LEAD. DIS-SOLVED (UG/L AS PB) 12102 11111 COPPER, DIS-SOLVED (UG/L AS CU) 12122 12111 CHRO-MIUM. DIS-SOLVED (UG/L AS CR) 10100 Table 3.--Continued 11111 CADMIUM DIS-SOLVED (UG/L AS CD) **71111** 12122 11111 FRANKLIN BARIUM, DIS-SOLVED (UG/L AS RA) 110 28 12 11111 21111 83-03-14 83-03-10 83-03-10 83-03-10 83-03-10 67-02-13 69-06-12 83-03-10 83-03-11 83-03-08 70-08-28 70-12-14 70-09-15 70-09-24 DATE OF SAMPLE 13/29E-08H01 13/30E-31N01 13/31E-01E01 13/32E-07E02 13/33E-06M01D1 14/29E-09A01 09/30E-02R01 09/30E-18H01 11/30E-11C01 12/28E-24N01 13/28E-13N01 14/29E-19001 14/31E-19801 14/31E-36J01 LOCAL IDENT-I-FIER 1111 11111 Table 3. -- Continued | | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | | 52 | <10 | <10 | <10 | <10 | : | 19 | ; | • | 120 | ; | : | ! | • | : | <10 | |------------------|---|----------|--------------|--------------|--------------|--------------|--------------|----------|--------------|--------------|--------------|--------------|----------------|--------------|----------|--------------|--------------|--------------| | | SILVER.
DIS-
SOLVED
(UG/L
AS AG) | | ⊽ | ; | : | • | : | : | <u>.</u> | ! | V | ₽ | ł | : | • | ; | ; | ; | | ıtinued | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | | - | : | ; | ; | : | ; | ₹ | : | - | - | : | : | : | : | : | : | | Table 3Continued | MERCURY
DIS-
SOLVED
(UG/L
AS HG) | KL IN | ·.1 | : | : | : | ł | ł | ·.1 | : | | . 1 | ł | ; | ! | ! | • | : | | Table | DATE
OF
Sample | FRANKLIN | 83-03-08 | 70-08-28 | 70-12-14 | 70-09-15 | 70-11-10 | 83-03-14 | 83-03-10 | 83-03-10 | 83-03-10 | 83-03-10 | 83-03-10 | 67-02-13 | 69-06-12 | 83-03-10 | 83-03-11 | 70-09-24 | | | LOCAL
IDENT-
FIER | | 09/30E-02P01 | 09/30E-18H01 | 11/30E-11C01 | 12/28E-24N01 | 13/28E-13N01 | | 13/29E-08H01 | 13/30E-31N01 | 13/31E-01E01 | 13/326-07602 | 13/33E-06M01D1 | 14/29E-09A01 | | 14/29E-19001 | 14/31E-19801 | 14/31E-36J01 | Table 3.--Continued | LOCAL
IDENT-
I-
FIER | LAT-
I-
TUDE | LONG-
I-
TUDE | S S S S S S S S S S S S S S S S S S S | GEO-
LOGIC
UNIT | DATE
OF
SAMPLE | DEPTH
OF
WELL*
Total
(FEET) | ELFV.
OF LAND
SURFACE
DATUM
(FT.
ABOVE | ALUM-
INUM.
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ALUM-
INUM-
DIS-
SOLVED
(UG/L
AS AL) | ARSENIC
DIS-
Solved
(UG/L'
AS AS) | |-------------------------------|----------------------|------------------------|---------------------------------------|-----------------------|----------------------|---|---|--|---|---| | | | | | GRANT | | | | | | | | 14/25E-01D01 | 46 44 08 | 119 38 24 | 01 | ; ; | 70-09-17 | 935 | : : | 20 | ; ; | • | | 15/26E-28001 | 45 | 119 33 5 | 0 | : | 69-05-14 | 933
892 | 1 1 | °10 | : : | i i | | 16/25E-04N01
17/25E-31N01 | 46 54 07
46 54 55 | 119 42 03 | 000 | 12250LM
121CARV | 83-03-15
70-12-03 | 110 | 1180.00 | 80 | 0 ! | 7 ; | | 17/27E-31D01 | 55 3 | 119 29 2 | 01 | 1 22CRRV | 1-09-2 | 810 | į | 50 | ; | i | | 17/30E-33K01 | 55 0 | 119 03 1 | 0 1 | 122CBRV | 3-03-1 | 1002 | 1344.00 | 1 ; | 10 | i | | 18/25E-05F01 | 04 5 | 119 42 5 | 0 | 121CARV | ç | 193 | 1179.00 | 06 | ! | i | | 18/25E-08C01
18/26E-32C01 | 47 04 18 | 119 43 05
119 35 21 | 0 0 | 112GLCV
122WNPM | 83-05-18
83-05-20 | 120
450 | 1165.00 | 1 1 | 100 | - | | | • | | • | | 1 | : | | | | • | | 18/25E-34K01
18/29F-02A01 | 47 05 10
47 05 10 | 119 32 35 | 0 0 | 1 1 2 5 L CV | 83-05-18 | 270 | 1250.00 | 1 1 | ! = | ∵ - | | 19/23E-12P01 | 08 2 | 119 52 3 | | ; | 70-12-03 | 135 | 1 | 04 | ; ; | · i | | 19/236-22401 | 07 2 | 119 56 0 | 0 | 122WNPM | 83-03-16 | 111 | 1276.00 | 1 | 10 | i | | 19/28E-28K04 | 2 | 119 18 1 | 01 | 121CARV | 71-09-24 | 1000 | : | 300 | ţ | i | | 20/25E-19001 | 13 1 | 119 44 2 | | 121CRRV | 71-05-21 | 132 | ; | ¢10 | : | i | | 21/26E-15H01 | 19 0 | 119 32 0 | | 122GDRD | 83-03-18 | 1850 | 1325.00 | ŧ | <10 | | | 21/26E-28A01 | | | 01 | 1126LCV | 83-03-17 | 65 | 1240.00 | 1 | 10 | | | 21/30E-03E02 | 20 3 | 119 02 2 | | 122GDRD | 83-05-18 | 1345 | 1670.00 | ! | 20 | • | | 22/26E-25M01 | 22 3 | 119 30 5 | | i | 71-09-24 | 355 | ! | <10 | į | i | | 22/27E-22H01 | | 119 24 3 | | 122GDRD | 83-03-17 | 345 | 1200.00 | ; | 10 | 1 | | 22/28E-03K01 | 47 25 44 | 119 16 54 | 01 | 1 | 71-05-20 | 170 | • | <10 | 1 | • | | 22/28E-28001 | 25 | 119 18 3 | | 121 C.BRV | 71-09-28 | 552 | | 20 | • | • | MERCURY TOTAL RECOV-ERABLE (UG/L AS HG). 1001v LEAD. DIS-SOLVED (UG/L AS PB) 1000 100 \$100 \$100 \$100 \$100 <100 <1 COPPER. DIS-SOLVED (UG/L AS CU) 1.000 \$50 \$1 \$1 CHRO-MIUM. DIS-SOLVED (UG/L 30.00 61665 Table 3.--Continued CADHIUM DIS-SOLVED (UG/L AS CO) 22111 12221 11171 130 BARIUM. DIS-SOLVED (UG/L AS BA) 11121 57 119 71-09-24 83-03-16 70-10-03 83-05-18 83-05-20 83-03-17 71-05-20 71-09-28 83-05-18 83-03-17 70-12-03 83-03-16 71-09-24 71-05-21 83-03-18 83-03-17 83-05-18 71-09-24 70-09-17 71-10-08 69-05-14 83-03-15 DATE OF SAMPLE 20/25E-19D01 21/26E-15H01 21/26E-28A01 21/30E-03E02 22/26E-25H01 18/26E-34K01 18/29E-02A01 19/23E-12R01 19/23E-22H01 19/28E-28K04 17/27E-31D01 17/30E-33K01 18/25E-05F01 18/25E-08C01 22/27E-22H01 22/28E-03K01 22/28E-28Q01 15/26E-28001 16/25E-04N01 17/25E-31N01 14/25E-01001 LOCAL IDENT-I-FIER ZINC. DIS-SOLVED (UG/L AS ZN) 50 29 SILVER. DIS-SOLVED (UG/L AS AG) 12221 111 11171 22111 1110-111 SELE-NIUM. DIS-SOLVED (UG/L AS SE) 12-21 !!!"! Table 3.--Continued MERCURY DIS-SOLVED (UG/L AS HG) 15551 33111 11121 11177 71-05-21 83-03-18 83-03-17 83-05-18 71-09-24 83-05-18 83-03-17 70-12-03 83-03-16 71-09-24 83-03-17 71-05-20 71-09-28 70-09-17 71-10-08 69-05-14 83-03-15 70-12-03 71-09-24 83-03-16 70-10-03 83-05-18 DATE OF Sample 20/25E-19D01 21/26E-15H01 21/26E-28A01 21/30E-03E02 22/26E-25M01 22/27E-22H01 22/28E-03K01 22/28E-28001 18/26E-34K01 18/29E-02A01 19/23E-12R01 19/23E-22H01 19/28E-28K04 17/27E-31001 17/30E-33K01 18/25E-05F01 18/25E-08C01 18/26E-32C01 15/26E-28001 16/25E-04N01 17/25E-31N01 14/25E-01001 LOCAL IDENT-I-FIER Table 3.--Continued | ARSENIC
DIS-
Solved
(ug/l
AS AS) | | :::: | 1 | ~ Ţ ¦ | 111 | 11155 | 10000 | |--|---------
-------------------------------------|--------------|---|--|---|--| | ALUM-
INUM-
DIS-
SOLVED
(UG/L
AS AL) | | 1115 | ; ; | 010 | ; | 10011 | | | ALUM-
INUM.
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | | 98 7 9 | 50 | 115 | 4 10 | 21111 | 111 | | ELFV. OF LAND SURFACE DATUM (FT. AROVE | | 1116 |)
 | 1918.00 | 2372.00 | 2372,00
2320,00
2410,00
1319,00 | 1111 | | DEPTH
OF
WELL:
Total
(FEET) | | 750
550
41 | 515 | 346
685
75 | 750 | 750
865
975
44
173 | 173
56
202
189 | | DATE
OF
SAMPLE | | 72-09-13
70-10-02
71-05-20 | 70-10-02 | 83-06-01
83-06-02 | 71-05-11 | 71-05-14
83-06-03
83-06-01
67-09-27 | 71-10-07
67-09-27
67-10-13
67-10-16 | | GEO-
LOGIC
UNIT | LINCOLN | 121CARV | | 122C3RV
122G0RD | 121C9RV
122G0RD | 1226NPH
1226RRV
1226DRD | 1126LCV | | SEQ. | | 2000 | 0 | 000 | 6 | 00000 | 02 | | | | 8040 | 0 | | | | | | | | | • • | 600 | 27 | 27
22
19
30
10 | 23
15
26 | | - B - B - B - B - B - B - B - B - B - B | | 70 4 4 L | | 56 93 | | 16 27
38 22
09 19
19 30
56 10 | 41 23
18 15
10 26 | | LONG-
1-
TUDE | | | 30 | | 9 19 | 90009 | ~ 60 | | LONG-
I-
TUDE | | 118 55 | 118 30 | 8 2 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 1 118 16 | 118 16
118 38
118 09
118 19
118 56 | 1 8 0 | | | | 0 4 4 L | 26 118 30 | 8 118 22
8 118 56
3 118 56 | 41 118 16 | 8 8 3 3 8 8 8 9 9 9 8 9 9 9 9 9 9 9 9 9 | 3 118 41
5 118 18
1 118 10 | | LAT- LONG-
I- I-
TUDE TUDE | | 25 118 55
20 118 49
59 118 43 | 22 26 118 30 | 08 118 22
38 118 56 | 34 41 118 16 | 41 118 16
29 118 38
48 118 09
04 118 19
05 118 56 | 33 118 41
35 118 18
41 118 10 | rable 3. -- Continued | | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | | | : | : | . ; | : | : | : | ; | : | : | ; | • | . ! | İ | • | İ | ; | ; | : | |------------------|---|---------|--------------|--------------|--------------|--------------|--------------|----------------|--------------|--------------|----------|--------------|--------------|--------------|--------------|---------------|----------------|----------------|---------------|----------------|---------------| | | LEAD.
DIS-
SOLVED
(UG/L
AS PB) | | m | <100 | <100 | : | <100 | - | . | <100 | <100 | <100 | <100 | 1 | : | ×40 | 04> | <100 | 040 | 04> | ×40 | | | COPPER.
DIS-
SOLVED
(UG/L
AS CU) | | m | <50 | <50 | ; | <50 | - | ₽ | <50 | <50 | <50 | <50 | ; | : | <400 | **** | < 50 | 00 4 > | 004> | <400 | | tinued | CHRO-
MIUM.
DIS-
SOLVED
(UG/L
AS CR) | | 0 | <30 | <30 | i | <30 | <10 | <10 | <30 | <30 | <30 | <30 | : | ; | <50 | < 20 | <30 | <50 | <50 | <50 | | Table 3Continued | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) |),
N | : | ! | : | ; | : | ₹ | ⊽ | • | ; | : | ; | ! | • | < 2 | <.5
<.5 | : | Ŝ | 4 5 | < 5 | | Table | BARIUM.
DIS-
SOLVED
(UG/L
AS BA) | LINCOLN | ; | : | : | : | 1 | 36 | œ | i | ; | : | ; | 1 | ł | <1000 | <1000 | }- | <1000 | <1000 | <1000 | | | DATE
OF
Sample | | 72-09-13 | 70-10-02 | 71-05-20 | 83-05-27 | 70-10-02 | 83-06-01 | 83-06-02 | 71-01-08 | 71-05-11 | 71-01-14 | 71-05-14 | 83-06-03 | 83-06-01 | 67-09-27 | 67-10-24 | 71-10-07 | 67-09-27 | 67-10-13 | 67-10-16 | | | LOCAL
IDENT-
FIER | | 21/31E-10M02 | 21/32E-08L01 | 21/32E-12801 | 21/34E-21K01 | 22/34E-26001 | 22/35E-23E01D1 | 23/31E-33E01 | 24/31E-16E01 | ı | 24/36E-16A07 | 24/36E-16A08 | 25/33E-27A02 | 25/37E-21L04 | 27/36E-30C03 | 28/31E-08R01 | | 28/33E-17F02 | 28/36E-20L01 | 28/37E-29L01 | Table 3. -- Continued | | тарте | 3.1.0 | sconcinaed | ٦. | | |-------------------------------|----------------------|--|---|--|--| | LOCAL
IDENT-
I-
FIER | DATE
OF
Sample | MERCURY
DIS-
SOLVED
(UG/L
AS HG) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | SILVER.
DIS-
SOLVED
(UG/L
AS AG) | ZINC.
DIS-
SOLVED
(UG/L
AS ZN) | | | LINCOLN | OLN | | | | | 1/31E-10M0 | -00- | ŧ | ŀ | i | 10 | | 21/32E-08L01 | 70-10-02 | 1 1 | : : | 1 1 | | | 1/34E-21K0
1/34E-21K0 | -05-2 | 1 | 1 1 | 1 1 | ? ! | | 2/34E-2600 | -10-0 | 1 | ł | ł | <10 | | 2/35E-23E01D1 | 1.4 | ·. | | ~ | 300 | | 3/31E-3 | | | ₽ | ⊽ | <3 | | 4/31E-16E01 | 71-01-08 | 1 : | 1 | 1 | 410
410 | | 24/36E-16A07 | 71-01-14 | 1 1 | 11 | ! ! | 017 | | 4/36E-16A08 | 71-05-14 | ì | 1 | ł | <10 | | 5/33E-27A02 | 83-06-03 | 1 | 1 | 1 | ! | | 5/37E-21L04 | 83-06-01 | 1 | ; | | 1 | | 7/36E-30C03 | 67-09-27 | 1 | <10 | | <500 | | 28/31E-08R01 | 67-10-24 | ! | <10 | 04> | <500 | | | 71-10-07 | 1 | 1 | | 30 | | 28/33E-17F02 | 67-09-27 | ŧ | <10 | 040 | <500 | | 28/36E-20L01 | 67-10-13 | | <10 | | <500 | | 28/37E-29L01 | 67-10-16 | ł | <10 | | <500 | ### TABLE 4.--Major ions as a percentage of total cation or anion milliequivalents ### EXPLANATION OF GEOLOGIC UNITS Geologic unit codes used in this table indicate that wells are open to one or more of the following formations. | Geologic | Unit Code | <u>Formation</u> | |-------------|------------|---| | Basalt | units: | | | 122 | SDLM | Saddle Mountains Basalt | | 122 | YKIM | Saddle Mountains and Wanapum Basalts, undivided | | 122 | WWPM | Wanapum Basalt | | 122 | CBRV | Wanapum and Grande Ronde Basalts, undivided | | 122 | GDRD | Gronde Ronde Basalt | | Unconsolida | ted units: | | | 110 | ALVM | Alluvium | | 112 | GLCV | Glaciofluvial deposits | | 112 | RGLD | Ringold Formation | Table 4.--Continued | WELL NUMBER | COUNTY | TINUN | CA | MG | NA | ĸ | ALK | CL | 504 | NUS | |-----------------|--------|----------|----|----|-----|----|------|----|-----|-----| | 15/29E-04A02 | ADAMS | 122CRPV | 7 | 6 | 83 | 5 | 73 | 10 | 16 | 1 | | 15/30E-12L01 | ADAHS | 122CRRV | 18 | 27 | 5.0 | 5 | 66 | 12 | 19 | 3 | | 15/31E-05L01 | ADAHS | 122CBRV | 25 | 25 | 44 | 6 | 70 | 13 | 16 | 1 | | 15/31E-08J01D1 | ADAMS | 122CBRV | 18 | 14 | 59 | 8 | 69 | 8 | 22 | 0 | | 15/31E-08N01 | ADAHS | -122CRRV | 12 | 10 | 72 | 7 | 77 | 8 | 15 | 0 | | 15/31E-16D01 | ADAMS | 122CBRV | 5 | 2 | 87 | 6 | 80 | 8 | 12 | 0 | | 15/31E-31P01 | ADAYS | 122MNPH | 45 | 44 | 10 | 1 | 43 | 16 | 33 | 8 | | 15/32E-07J01 | ADAYS | 122GDRD | 13 | 11 | 70 | 5 | 81 | 8 | 11 | 0 | | 15/33E-02A01D1 | ADAYS | 122CARV | 39 | 23 | 34 | 4 | 75 | 12 | 10 | 3 | | 15/33E-15N02 | ADAMS | 122MNPM | 55 | 31 | 12 | 2 | 53 | 20 | 9 | 17 | | 15/35E-02D01 | ADAYS | 155MNbH | 27 | 31 | 36 | 6 | 89 | 4 | 5 | 3 | | 15/36E-28N01D1 | ADAMS | 122CRRV | 31 | 25 | 41 | 4 | 85 | 6 | 7 | 2 | | 15/36E-33A02 | ADAMS | 122GD9D | 29 | 32 | 35 | 4 | 92 | 4 | 4 | 0 | | 16/28E-04B01 | ADAMS | 1552DFH | 39 | 39 | 18 | 4 | 68 | 6 | 21 | 5 | | 16/28E-05N01 | ADAMS | 125MNbW | 33 | 39 | 25 | 3 | 57 | 8 | 30 | 5 | | 16/29E-34D01 | ADAMS | 122CBBA | 5 | 1 | 89 | 8 | 76 | 10 | 14 | 0 | | 16/30E-26A02D1 | ADAMS | 122CBeV | 9 | 6 | 78 | 7 | 79 | 8 | 12 | 0 | | 16/31E-14K01 | ADAMS | 122CRRV | 11 | 5 | 78 | 7 | 85 | 6 | 8 | 1 | | 16/31E-33P01 | ADAMS | 155MNbm | 31 | 26 | 37 | 6 | 79 | 8 | 13 | 1 | | 16/32E-11.D01D1 | ADAYS | 122CRRV | 21 | 9 | 64 | 6 | 8 n² | 9 | 10 | 1 | | 16/32E-14D01 | ADAMS | 122CBRV | 21 | 10 | 62 | 7 | 70 | 13 | 17 | 0 | | 16/32E-18G01D2 | ADAMS | 122CRPV | 4 | 2 | 89 | 5 | 84 | 8 | В | 0 | | 16/33E-17802 | ADAMS | 155ANbw | 36 | 34 | 27 | 3 | 91 | 3 | 5 | 1 | | 16/34E-13R02 | ADAMS | 125ANbh | 50 | 31 | 16 | 3 | 94 | 2 | 3 | 1 | | 16/35E-31801 | ADAMS | 122CR9V | 46 | 32 | 19 | 3 | 86 | 5 | 4 | 4 | | 16/35E-32N0101 | 2PAGA | 122CBRV | 47 | 31 | 19 | 3 | 87 | 6 | 5 | 2 | | 16/36E-06B02 | ADAMS | 122CBPV | 50 | 34 | 14 | 2 | 59 | 19 | 10 | 12 | | 16/36E-11H01D1 | ADAMS | 122WNPM | 59 | 29 | 10 | 2 | 76 | 8 | 8 | 8 | | 17/31E-03B01 | ADAMS | 122CRRV | 15 | 8 | 72 | 6 | 86 | 6 | 8 | 0 | | 17/31E-07E01 | ADAMS | 122MNPM | 34 | 36 | 27 | 2 | 69 | 5 | 16 | 9 | | 17/31E-11001 | ADAHS | 122CBRV | 29 | 17 | 49 | 6 | 71 | 8 | 16 | 5 | | 17/31E-12D01 | ADAMS | 122GDRD | 17 | 8 | 69 | 6 | 88 | 6 | 6 | 0 | | 17/33E-06D03 | ADAMS | 122CBRV | 21 | 10 | 63 | 7 | 90 | 5 | 4 | 0 | | 17/33E-12F02 | ADAMS | 122GDPD | 15 | 6 | 73 | 6 | 85 | 9 | 5 | 1 | | 17/34E-23F01 | ADAMS | 155MNbH | 42 | 33 | 24 | 2 | 34 | 26 | 32 | 8 | | 17/35E-11H01D2 | ADAYS | 122WNPM | 41 | 34 | 21 | 3 | 89 | 4 | 4 | 3 | | 17/38E-02K01 | ADAMS | 1554NbW | 48 | 34 | 16 | 1 | 52 | 17 | 11 | 19 | | 18/31E-07E01D1 | ADAMS | 122CBPV | 9 | 4 | -81 | 6 | 74 | 7 | 19 | 0 | | 18/31E-13E01 | ADAMS | 122CARV | 16 | 14 | 64 | 6 | 79 | 9 | 12 | 0 | | 18/31E-32R01 | ADAMS | 122CRRV | 24 | 18 | 50 | 7 | 76 | 9 | 15 | 0 | | 18/31E-33D01 | ADAMS | 122GD9D | 2 | 0 | 93 | 4 | 85 | 9 | 6 | 0 | | 18/32E-16C02 | ANAMS | 155ANbH | 19 | 11 | 60 | 10 | 77 | 8 | 15 | 0 | | 18/33E-12C02 | ADAMS | 122MNPM | 35 | 27 | 32 | 6 | 71 | 6 | 15 | 8 | | 18/35E-04B01 | ADAYS | 122MNPH | 59 | 23 | 15 | 2 | 63 | 12 | 12 | 13 | | 18/35E-11K01 | ADAMS | 122CBRV | 22 | 22 | 52 | 4 | 83 | 7 | 6 | 5 | | 18/35E-12001 | ADAMS | 125MNPM | 52 | 33 | -13 | 1 | 52 | 11 | 10 | 27 | | 19/31E-24H01 | ADAYS | 122CBRV | 11 | 7 | 78 | 4 | 63 | 16 | 21 | 0 | | 19/31E-27G01D1 | ADAMS | 122CBRV | 5 | 1 | 88 | 5 | 78 | 10 | 12 | Ŏ | | 19/32E-04H02 | ADAMS | 122CBRV | 35 | 22 | 38 | 5 | 72 | 10 | 17 | i | | 19/32E-24N01 | ADAMS | 122GDRD | 1 | 0 | 95 | 4 | 89 | 8 | 3 | Ō | | 19/33E-07R01 | ADAMS | 122GDRD | 7 | 4 | 83 | 6 | 89 | 6 | 5 | ō | | 19/33E-08002 | ADAMS | 122GDRD | 3 | 1 | 90 | 5 | 93 | 5 | ī | Ŏ | | 19/34E-20B02 |
ADAMS | 122CBRV | 8 | 4 | 82 | 6 | 91 | 5 | 4 | Ō | | 19/36E-05B01 | ADAMS | 125ANDH | 37 | 28 | 34 | ì | 57 | 18 | 19 | 6 | | 19/36E-20H01D1 | ADAYS | 122CBRV | 12 | 8 | 74 | 6 | 88 | 3 | ģ | .0 | | 19/36E-21C01D1 | ADAMS | 122CBRV | 13 | 10 | 72 | 5 | 88 | 4 | á | Õ | | | | | | - | | - | | - | _ | - | Table 4.--Continued | WELL NUMBER | COUNTY | GUNIT | CA | MG | NA | ĸ | ALK | CL | 504 | N03 | |----------------|----------|---------|-----|----|------------|----|-----|----|------------|-----| | 20/31E-07H02 | ADAMS | 122C9RV | 30 | 26 | 40 | 5 | 56 | 19 | 21 | 4 | | 20/31E-31403 | ADAMS | 122C9PV | 36 | 24 | 34 | 6 | 73 | 9 | 18 | 1 | | 29/32E-15002 | ADAMS | 122MNbw | 50 | 27 | 21 | 5 | 64 | 16 | 19 | 1 | | 20/32E-15L01D2 | ADAMS | 122CPRV | 15 | 9 | 71 | 5 | 78 | 10 | 11 | 0 | | 20/34E-13R01 | ADAMS | 122WNPM | 5ë | 32 | 36 | 4 | 59 | 25 | 9 | 7 | | 20/35E-27401 | ADAMS | 122CBRV | 16 | 13 | 66 | 5 | 87 | 6 | 6 | 1 | | 20/35E-34M02 | ADAMS | 122WNPM | 51 | 36 | 13 | 1 | 55 | 18 | 14 | 13 | | 20/37E-32D01 | ADAMS | 122WNPM | 51 | 33 | 16 | 1 | 65 | 15 | 5 | 15 | | 23/24E-09E01 | DOUGLAS | 122GDRD | 42 | 27 | 29 | 2 | 81 | 5 | 13 | 1 | | 24/21E-13A03 | DOUGLAS | 122GDRD | 44 | 40 | 15 | 5 | 93 | 1 | 4 | 2 | | 24/25E-18E01 | DOUGLAS | 122CBRV | 4.0 | 37 | 15 | 1 | 28 | 32 | 16 | 24 | | 24/26E-06H01 | DOUGLAS | 122WNPM | 53 | 31 | 13 | 5 | 59 | 15 | 18 | 8 | | 26/22E-25N01 | DOUGLAS | 122GDRD | 54 | 29 | 16 | 1 | 90 | 3 | 6 | 1 | | 09/29E-02G02 | FRANKLIN | 12250LM | 6 | 4 | 84 | 7 | 84 | 16 | 0 | 0 | | 09/30E-02R01 | FRANKLIN | 1225DLM | 39 | 35 | 23 | 5 | 58 | 12 | 26 | 5 | | 10/28E-12F01 | FRANKLIN | 112RGLD | 33 | 27 | 35 | 5 | 60 | 2 | 38 | 0 | | 10/30E-03Q01 | FRANKLIN | 12250LM | 32 | 43 | 2 2 | 4 | 54 | 16 | 20 | 10 | | 10/30E-35R01 | FRANKLIN | 112GLCV | 45 | 29 | 23 | 3 | 47 | 15 | 24 | 14 | | 10/31E-32L02 | FRANKLIN | 122SDLM | 28 | 37 | 29 | 6 | 66 | 6 | 25 | 3 | | 10/32E-23J01 | FRANKLIN | 122WNPM | 32 | 22 | 40 | 6 | 80 | 6 | 12 | 2 | | 11/28E-36R01 | FRANKLIN | 1225DLM | 22 | 14 | 58 | 6 | 88 | 12 | 0 | 0 | | 11/29E-03A01 | FRANKLIN | 12250LM | 31 | 17 | 47 | 5 | 77 | 6 | 16 | 0 | | 11/30E-02R01 | FRANKLIN | 112GLCV | 45 | 31 | 21 | 3 | 61 | 11 | 23 | 5 | | 11/30E-12D01 | FRANKLIN | 1254KIW | 26 | 12 | 55 | 8 | 51 | 15 | 32 | 2 | | 11/30E-36M01 | FRANKLIN | 12250LM | 34 | 53 | 12 | 1 | 46 | 18 | 29 | 7 | | 11/31E-04P01 | FRANKLIN | 122CARV | 24 | 16 | 53 | 7 | 72 | 6 | 14 | 8 | | 12/28E-23H01D1 | FRANKLIN | 12250LM | 18 | 8 | 68 | 6 | 82 | 12 | 5 | 0 | | 12/29E-34B0101 | FRANKLIN | 12250LM | 9 | 4 | 79 | В | 83 | 10 | 7 | 0 | | 12/30E-05801 | FRANKLIN | 1227KIW | 44 | 42 | 12 | 5 | 41 | 19 | 33 | 7 | | 13/28E-13N01 | FRANKLIN | 122WNPM | 1 | 1 | 87 | 11 | 79 | 10 | 10 | 0 | | 13/29E-09H01 | FPANKLIN | 12250LM | 29 | 20 | 46 | 5 | 84 | 9 | 7 | 0 | | 13/30E-31N01 | FPANKLIN | 1225DLM | 42 | 34 | 23 | 1 | 51 | 13 | 31 | 5 | | 13/31E-01E01 | FPANKLIN | 1226DPD | 47 | 31 | 19 | 3 | 78 | 9 | 11 | 3 | | 13/32E-03C01 | FRANKLIN | 122MNPM | 29 | 52 | 46 | 3 | 68 | 6 | 18 | 8 | | 13/32E-07E02 | FRANKLIN | 122MNbW | 42 | 30 | 24 | 4 | 78 | 8 | 12 | 2 | | 13/33E-06M01D1 | FRANKLIN | 122Cd6A | 11 | 4 | 80 | 4 | 77 | 6 | 16 | 0 | | 14/295-05401 | FPANKLIN | 12257L4 | 32 | 42 | 23 | 2 | 53 | 15 | 27 | 5 | | 14/29E-19001 | FRANKLIN | 1225064 | 34 | 34 | 26 | 4 | 43 | 12 | 33 | 11 | | 14/30E-10P01 | FPANKLIN | 125MNDW | 37 | 37 | 23 | 3 | 75 | 6 | 16 | 3 | | 14/31E-19801 | FRANKLIN | 1224KIW | 37 | 38 | 21 | 4 | 57 | 9 | 30 | 4 | | 14/34E-25P01D1 | FPANKLIN | 1224NPM | 43 | 35 | 21 | 2 | 54 | 18 | 22 | 6 | | 14/36E-19N01 | FPANKLIN | 122CBPV | 20 | 34 | 40 | 6 | 91 | 4 | 4 | 0 | | 14/23E-26A01D1 | GRANT | 1224KIW | 32 | 16 | 44 | 7 | 84 | 4 | 9 | 4 | | 14/23E-36L02 | GRANT | 155Mdbw | 60 | 24 | 13 | 3 | 70 | 8 | 20 | 2 | | 14/25E-02C01 | GRANT | 12250LM | 46 | 28 | 23 | 4 | 78 | 7 | 14 | 2 | | 15/23E-35P01 | GRANT | 125MNbw | 28 | 20 | 43 | 9 | 89 | 5 | 9 | 0 | | 15/25E-35J01 | GPANT | 1225DLM | 43 | 29 | 25 | 4 | 79 | 6 | 14 | 0 | | 16/23E-21J01 | GRANT | 125MNbw | 35 | 31 | 31 | 4 | 71 | 6 | 2 2 | 1 | | 16/24E-04H01 | GPANT | 122C3BA | 34 | 48 | 15 | 3 | 37 | 8 | 50 | 4 | | 16/25E-01001 | GRANT | 155AKIW | 36 | 32 | 28 | 4 | 61 | 10 | 26 | 3 | | 16/25E-04N01 | GRANT | 12250LM | 43 | 47 | 9 | 1 | 25 | 31 | 39 | 6 | | 16/27E-10N01 | GRANT | 155AKIW | 42 | 33 | 22 | 4 | 46 | 15 | 3 3 | 6 | | 17/23E-02B01 | GPANT | 125MNbw | 40 | 48 | 10 | 1 | 74 | 9 | 15 | 2 | | 17/23E-2340101 | GRANT | 122CBBA | 23 | 25 | 49 | 3 | 34 | 6 | 59 | 0 | | 17/24E-22L01 | GPANT | 155MNbw | 35 | 32 | 30 | 2 | 52 | 16 | 29 | 4 | | | | | | | | | | | | | Table 4.--Continued | WELL NUMBER | COUNTY | GUNIT | CA | MG | NA | ĸ | ALK | CL | 504 | N03 | |-----------------|---------|---------|----|----|----|---|-----|-----|-----|-----| | 17/27E-31001 | GRANT | 122CBRV | 36 | 31 | 29 | 4 | 62 | 9 | 27 | 3 | | 17/30E-33F01 | GRANT | 122CBRV | 24 | 32 | 41 | 3 | 58 | 7 | 13 | 21 | | 18/24E-04D02 | GRANT | 122WNPM | 43 | 38 | 18 | 2 | 68 | 10 | 13 | 9 | | 18/25E-09C01 | GRANT | 112GLCV | 44 | 32 | 22 | 1 | 57 | 7 | 29 | 7 | | 18/26E-32C01 | GRANT | 122WNPM | 38 | 37 | 22 | 3 | 74 | 10 | 13 | 4 | | 18/26E-34K01 | GRANT | 112GLCV | 35 | 34 | 26 | 4 | 47 | 42 | 11 | 0 | | 18/28F-26F01 | GRANT | 122CRPV | 5 | 4 | 84 | 7 | 72 | 10 | 17 | 0 | | .18/29E-01A01D1 | GRANT | 122C9RV | 26 | 28 | 43 | 3 | 66 | 8 | 21 | 5 | | 18/29E-02A01 | GRANT | 122WNP4 | 13 | 19 | 67 | 2 | 64 | 8 | 24 | 4 | | 18/30E-16R01 | GRANT | 122WNPM | 39 | 43 | 18 | 1 | 25 | 25 | 37 | 12 | | 19/23E-22M01 | GRANT | 122WNPM | 42 | 50 | 7 | 1 | 73 | 7 | 15 | 5 | | 19/26E-25D01 | GRANT | 112GLCV | 45 | 19 | 31 | 5 | 88 | 2 | 10 | 0 | | 19/27E-24H02 | GRANT | 112GLCV | 27 | 35 | 32 | 5 | 81 | 4 | 11 | 4 | | 19/27E-30N01 | GRANT | 122WNPM | 37 | 33 | 28 | 2 | 66 | 6 | 21 | 8 | | 19/29E-03B01 | GRANT | 122CBRV | 6 | 2 | 85 | 7 | 7.8 | 14 | 7 | 0 | | 19/29E-08L01 | GRANT | 122WNPM | 32 | 31 | 35 | 3 | 78 | 3 | 15 | 3 | | 19/30E-03E01 | GRANT | 122CBRV | 5 | 3 | 88 | 4 | 73 | 14 | 12 | 0 | | 19/30E-07L01 | GRANT | 122CBRV | 2 | 1 | 93 | 5 | 73 | 14 | 13 | 0 | | 19/30E-15L01 | GRANT | 122CRRV | 2 | Ō | 94 | 4 | 73 | 12 | 15 | 0 | | 20/235-16001 | GRANT | 122WNPM | 19 | 66 | 14 | 1 | 64 | 11 | 22 | 3 | | 20/25E-14K01 | GRANT | 115eFCA | 54 | 26 | 16 | 4 | 76 | 4 | 17 | 3 | | 20/25E-17Q01 | GRANT | 122WNPM | 46 | 32 | 20 | 2 | 66 | 7 | 20 | 7 | | 20/28E-32H01 | GRANT | 122CARV | 25 | 20 | 49 | 7 | 75 | 9 | 16 | 1 | | 20/29E-01A01 | GRANT | 122CRRV | 26 | 20 | 48 | 6 | 74 | 9 | 16 | Ō | | 21/26E-15H01 | GRANT | 122GDRD | 33 | 27 | 36 | 4 | 85 | 4 | 11 | 0 | | 21/26E-28A01 | GRANT | 115eFCA | 45 | 37 | 16 | 3 | 70 | 11 | 13 | 6 | | 21/28E-36R01 | GRANT | 122WNPM | 52 | 33 | 10 | 4 | 81 | 3 | 14 | 2 | | 21/30E-03E02 | GRANT | 122GDPD | 26 | 8 | 59 | 7 | 56 | 18 | 26 | 0 | | 21/30E-23J01D1 | GRANT | 122GDRD | 20 | 5 | 67 | 8 | 66 | 15 | 19 | Ō | | 22/26E-04C02 | GRANT | 122MNPM | 49 | 33 | 16 | 3 | 63 | 13 | 10 | 14 | | 22/26E-36B01 | GRANT | 122CBPV | 43 | 34 | 20 | 3 | 85 | 4 | 9 | 2 | | 22/27E-22H01 | GRANT | 122GDRD | 22 | 15 | 57 | 7 | 79 | 3 | 17 | ī | | 23/27E-10B01 | GRANT | 122CBRV | 34 | 27 | 34 | 5 | 7.8 | 3 | 18 | Ö | | 24/28E-03801 | GRANT | 122GDRD | 36 | 31 | 28 | 4 | 87 | 3 | 9 | ì | | 21/32E-12H01D1 | LINCOLN | 122CBRV | 46 | 31 | 21 | 3 | 77 | 9 | ıí | 3 | | 21/32E-31C01 | LINCOLN | 122CARV | 29 | 21 | 44 | 6 | 60 | ģ | 31 | Õ | | 51/33E-08K01 | LINCOLN | 122CARV | 28 | 19 | 49 | 4 | 83 | 7 | 10 | Ö | | 21/33E-24B01 | LINCOLN | 122WNPM | 41 | 31 | 28 | ī | 24 | 41 | 28 | 8 | | 21/34E-14M01 | LINCOLN | 122WNPM | 47 | 34 | 16 | 3 | 31 | 6 | 57 | 6 | | 21/34E-21K01 | LINCOLN | 122CRRV | 39 | 26 | 33 | 3 | 89 | 4 | 7 | 0 | | 21/34E-35A01 | LINCOLN | 122WNPM | 31 | 36 | 31 | 2 | 74 | 9 | ģ | 8 | | 21/36E-27P02 | LINCOLN | 122WNPH | 30 | 32 | 35 | 3 | 77 | ģ | 14 | 0 | | | - | | 38 | 38 | 20 | _ | | | | 5 | | 21/38E-14J01 | LINCOLN | 122WNPM | 27 | 12 | | 4 | 86 | 4 | 8 | | | 21/38E-23L01 | LINCOLN | 122G0PD | | | 56 | 5 | 9,4 | | 2 | 1 | | 22/31E-21F01 | LINCOLN | 122GDRD | 41 | 28 | 28 | 3 | 85 | 6 | 9 | 0 | | 22/32E-30D01 | LINCOLN | 122CRRV | 31 | 22 | 43 | 4 | 84 | 6 | 10 | 0 | | 22/33E-05K01 | LINCOLN | 122WNPM | 47 | 30 | 21 | 2 | 5.8 | 14 | 13 | 15 | | 22/33E-17N01 | LINCOLN | 122CRRV | 16 | 9 | 70 | 5 | 8.2 | . 7 | 10 | 0 | | 22/34E-18M01 | LINCOLN | 122WNPM | 35 | 35 | 27 | 3 | 54 | 15 | 29 | 2 | | 22/35E-13H01 | LINCOLN | 125MNbW | 22 | 17 | 58 | 5 | 67 | 15 | 18 | 0 | | 22/35E-23E0101 | LINCOLN | 122CRRV | 42 | 31 | 24 | 3 | 7.2 | 12 | 13 | 3 | | 55/36E-18N0SD1 | LINCOLN | 122CRRV | 52 | 33 | 14 | 1 | 6,1 | 14 | 50 | 6 | | 22/37E-12C02D1 | LINCOLN | 122CBRV | 25 | 29 | 43 | 3 | 90 | 4 | 5 | 1 | | 22/39E-36H01 | LINCOLN | 122CBRV | 35 | 37 | 24 | 4 | 65 | 27 | 8 | 0 | | 23/31E-33E01 | LINCOLN | 122GDRD | 13 | 8 | 75 | 4 | 86 | 7 | 7 | 0 | | 23/33E-10A01 | LINCOLN | 125Mbbw | 55 | 33 | 11 | 1 | 28 | 36 | 18 | 1.8 | Table 4. -- Continued | WELL NUMBER | COUNTY | GUNIT | CA | MG | NA | K | ALK | CL | S04 | N03 | |----------------|---------|---------|----|----|----|---|-----|----|-----|-----| | 23/35E-03H01D1 | LINCOLN | 122CRRV | 22 | 32 | 39 | 7 | 80 | 8 | 12 | 0 | | 23/35E-30F01 | LINCOLN | 122WNPM | 50 | 36 | 13 | 1 | 49 | 22 | 11 | 17 | | 23/36E-13N01 | LINCOLN | 122WNPM | 55 | 29 | 15 | 1 | 57 | 15 | 13 | 15 | | 23/37E-29F01 | LINCOLN | 122WNPM | 35 | 36 | 27 | 2 | 83 | 6 | 7 | 4 | | 23/38E-12A01 | LINCOLN | 122WNPM | 39 | 31 | 27 | 3 | 90 | 3 | 7 | 0 | | 24/31E-14E01 | LINCOLN | 122WNPM | 21 | 31 | 41 | 7 | 83 | 5 | 12 | 0 | | 24/33E-06Q01 | LINCOLN | 122WNPM | 39 | 31 | 26 | 4 | 75 | 8 | 12 | 5 | | 24/36E-03D01 | LINCOLN | 122WNPH | 43 | 29 | 22 | 7 | 71 | 6 | 11 | 13 | | 24/37E-06Q01 | LINCOLN | 122WNPM | 46 | 23 | 27 | 4 | 72 | 9 | 13 | 6 | | 24/39E-26K01 | LINCOLN | 122WNPM | 48 | 32 | 18 | 3 | 92 | 3 | 5 | 0 | | 25/32E-35P01 | LINCOLN | 1226DRD | 19 | 16 | 60 | 5 | 89 | 5 | 6 | 1 | | 25/33E-01801 | LINCOLN | 122WNPM | 46 | 26 | 25 | 2 | 60 | 13 | 18
 8 | | 25/33E-27A02 | LINCOLN | 122CBRV | 28 | 28 | 42 | 3 | 87 | 4 | 8 | 0 | | 25/35E-03E01D1 | LINCOLN | 122WNPM | 48 | 24 | 26 | 2 | 62 | В | 10 | 20 | | 25/36E-27001 | LINCOLN | 122WNPM | 50 | 26 | 22 | ž | 67 | 6 | 14 | 13 | | 25/37E-21L04 | LINCOLN | 1226DRD | 18 | 8 | 69 | 5 | 93 | 3 | 3 | 0 | | 25/37E-27E01 | LINCOLN | 122WNPM | 46 | 23 | 26 | 4 | 59 | 8 | 13 | 20 | | 25/38E-15N01 | LINCOLN | 122WNPM | 48 | 24 | 26 | i | 59 | 13 | 15 | 13 | | 26/32E-26D01 | LINCOLN | 122WNPM | 30 | 34 | 32 | | 91 | 3 | 6 | 10 | | 26/33E-07E01 | LINCOLN | 122WNPM | 42 | 35 | 21 | ž | 62 | 12 | 23 | 3 | | 26/33E-19D01 | LINCOLN | 122C9RV | 31 | 35 | 31 | 4 | 91 | 3 | 6 | 5 | | F0/335-14001 | LIMPOFM | IEELTRY | 21 | 35 | 21 | - | 71 | 3 | 0 | U |